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Abstract. We propose new instantiations of chosen-ciphertext secure identity-
based encryption schemes with wildcards (WIBE). Our schemes outperform
all existing alternatives in terms of efficiency as well as security. We achieve
these results by extending the hybrid encryption (KEM–DEM) framework
to the case of WIBE schemes. We propose and prove secure one generic
construction in the random oracle model, and one direct construction in the
standard model.

1 Introduction

One of the major obstacles for the deployment of public-key cryptography in the
real world is the secure linking of users to their public keys. While typically solved
through public-key infrastructures (PKI), identity-based encryption [19, 18, 10, 8]
can avoid some of the costs related to PKIs because it simply uses the identity of a
user (e.g., her email address) as her public key. This way, Bob can for example send
an encrypted email to Alice by encrypting it under her identity alice@cs.univ.edu,
which only Alice can decrypt using the private key that only she can obtain from a
trusted key distribution centre.

Abdalla et al. [1] recently proposed a very intuitive extension to this idea by
allowing the recipient identity to contain wildcards. A ciphertext can then be de-
crypted by multiple recipients with related identities. For example, Bob can send
an encrypted email to the entire computer science department by encrypting under
identity *@cs.univ.edu, or to all system administrators in the university by en-
crypting under identity sysadmin@*.univ.edu. This extension therefore provides a
very intuitive interface for identity-based mailing lists.

Arbitrary-length plaintexts. As is the case for most public-key and identity-
based encryption schemes, the identity-based encryption with wildcards (WIBE)
schemes of [1] can only be used to encrypt relatively short messages, typically about
160 bits. To encrypt longer messages, one will have to resort to hybrid techniques:
the sender uses the WIBE to encrypt a fresh symmetric key K and encrypts the
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actual message under the key K. The basic construction has been used within the
cryptographic community for years, dating back to the work of Blum and Gold-
wasser in 1984 [4], but its security for the case of public-key encryption was not
properly analysed until the work of Cramer and Shoup [11]. One would intuitively
expect these results to extend to the case of WIBEs, but this was never formally
shown to be the case.

Chosen-ciphertext security. The basic schemes of [1] are proved secure under
an appropriate adaptation of indistinguishability (IND) under chosen-plaintext at-
tack (CPA) [13], where the adversary is given access to a key derivation oracle and
has to distinguish between encryptions of two messages of its choice. This security
notion is often not considered sufficient for practise though. Rather, the commu-
nity seems to have settled with the stronger notion of indistinguishability under
chosen-ciphertext attack (CCA) [16] as the “right” security notion for practical
use. The need for chosen-ciphertext security in practise was shown by Bleichen-
bacher’s attack [21] on the SSL key establishment protocol, which was based on
the (CPA-secure) RSA-PKCS#1 version 1 [22] encryption standard. The practi-
cal appreciation for the notion is exemplified by the adoption of the (CCA-secure)
RSA-OAEP encryption scheme [23] in version 2 of the RSA-PKCS#1 standard.

A generic construction. Canetti et al. [9] proposed a generic construction of
a CCA-secure hierarchical identity-based encryption (HIBE) scheme with up to L
hierarchy levels from any (L + 1)-level CPA-secure HIBE scheme and any one-time
signature scheme. Abdalla et al. adapted their techniques to the WIBE setting, but
their construction requires a (2L + 2)-level CPA-secure WIBE scheme to obtain an
L-level CCA-secure one. (The reason is that the construction of [9] prefixes a bit
to identity strings indicating whether it is a real identity or a public key of the
one-time signature scheme. In the case of WIBE schemes, these bits must be put on
separate levels, because if not the simulator may need to make illegal key derivation
queries to answer the adversary’s decryption queries.)

Doubling the hierarchy depth has a dramatic impact on efficiency and security
of the schemes. First, the efficiency of all known WIBE schemes (in terms of com-
putation, key length, and ciphertext length) is linear in the hierarchy depth, so
the switch to CCA-security essentially doubles most associated costs. Second, the
security of all known WIBE schemes degrades exponentially with the maximal hi-
erarchy depth L. If the value of L is doubled, then either the scheme is restricted to
half the (already limited) number of “useful” hierarchy levels, or that the security
parameter must be increased to restore security. The first measure seriously limits
the functionality of the scheme, the second increases costs even further.

For example, the WIBE scheme from [1] based on Waters’ HIBE scheme [20] loses
a factor of (2nqK)L in the reduction to the BDDH problem, where n is the bit length
of an identity string at each level of the hierarchy and qK is the number of adversarial
key derivation queries. Assume for simplicity that the advantage of solving the
BDDH problem in a group of order p > 2k is 2−k/2. If n = 128 and qK = 220, then
to limit an adversary’s advantage to 2−80 in a WIBE scheme with L = 5 levels,
one should use a group order of at least 160 + 56L = 440 bits. In the CCA-secure
construction however, one needs a group order of 160+56(2L+2) = 832 bits, almost
doubling the size of the representation of a group element, and multiplying by eight
the cost of most (cubic-time) algorithms! Furthermore, since there are twice as
many levels, the ciphertext must contain twice as many group elements, so overall,
ciphertexts are four times as large and the cost of encryption and decryption is
multiplied by sixteen!

Our contributions. In this paper, we provide formal support for the use of hybrid
encryption with WIBE schemes, and we present CCA-secure schemes that are more



Scheme |mpk | |d | |C| Encap Decap Security loss

2-L(BB) 4L + 7 2L + 1 3L + 2 3L + 2 2L + 1 q2L+2
H

OW (BB) 2L + 3 L + 1 2L + 2 2L + 2 L + 1 qL
H

2-L(BBG) 2L + 6 2L L + 3 L + 3 2 q2L+2
H

OW (BBG) L + 4 L + 1 L + 3 L + 3 2 qL
H

2-L(Wa) (n + 3)L + 3 2L + 1 (n + 2)L + 2 (n + 2)L + 2 2L + 1 (2nqK)2L+2

no-RO (n + 1)L + 3 L + 1 (n + 1)L + 2 (n + 1)L + 2 L + 3 L(20(n + 1)qK)L

Fig. 1. Efficiency comparison between our CCA-secure schemes and those of [1]. The BB,
BBG and Wa schemes are the WIBE schemes based on [5, 7, 20] presented in [1]. The no-RO
scheme is our direct construction without random oracles. The 2-L(·) transformation refers
to the generic CCA-secure construction of [1]; the OW (·) transformation is our random-
oracle based construction. We compare the schemes in terms of master public key size
(|mpk |), user secret key size (|d|), ciphertext size (|C|), key encapsulation time (Encap), key
decapsulation time (Decap), and the factor lost in the security reduction to the underlying
assumption. The given values refer to the number of group elements for |mpk |, |d|, |C|; to
the number of exponentiations for Encap; and to the number of pairing computations for
Decap. L is the maximal hierarchy depth and n is the bit length of (a collision-resistant
hash of) an identity string. The values qH, qK and qD refer to the number of queries of an
adversary to the random oracle, key derivation oracle and decryption oracle, respectively.

efficient and secure than those obtained through the generic construction of [1]. We
achieve these results by considering WIBE schemes as consisting of separate key
and data encapsulation mechanisms (KEM–DEM) [11], leading to the definition of
identity-based key encapsulation mechanisms with wildcards (WIB-KEM). Here,
the WIB-KEM encrypts a random key under a (wildcarded) identity, while the
DEM encrypts the actual data under this random key.

We first show that the combination of a CPA-secure (resp. CCA-secure) WIB-
KEM with a CPA-secure (resp. CCA-secure) DEM indeed yields a CPA-secure
(resp. CCA-secure) WIBE scheme. This result may be rather unsurprising, but
needed proof: it is necessary to validate the use of hybrid techniques for the case of
WIBEs, in the same way that it was necessary for the public-key [11] and identity-
based [3] cases. Furthermore, it should be noted that subtleties can arise in the
proving of such results, for example in the case of certificateless KEMs [3].

Obviously, any secure WIBE scheme can be used to instantiate the WIB-KEM in
the hybrid construction. (If the WIBE securely encrypts arbitrary messages, it also
securely encrypts random keys.) This solves the problem of encrypting arbitrary-
length messages, but still requires a CCA-secure WIBE scheme to achieve chosen-
ciphertext security. As we argued above, all known instantiations of such schemes
suffer from efficiency problems due to the doubling of the number of levels.

We therefore present a generic construction of L-level CCA-secure WIB-KEMs
in the random oracle model [2] along the lines of Dent [12] from any L-level WIBE
scheme that is one-way (OW) secure under chosen-plaintext attack. One-wayness
is a much weaker security requirement than CCA-security, allowing much more
efficient instantiations. In particular, one-wayness is implied by indistinguishability
(for sufficiently large message spaces), so we can use any of the IND-CPA secure
constructions of [1]. We also note that this construction can also be used to build
CCA-secure HIBE schemes.

The resulting efficiency gains are summarised in Fig. 1. Abdalla et al. present
two efficient schemes in the random oracle model based on the HIBE schemes of [5,
7]. One can see that our schemes perform significantly better in terms of key sizes,
ciphertext length, and encapsulation and decapsulation times. When taking into
account the security loss, one either has to conclude that our scheme supports twice
the hierarchy depth, or that the inefficiency of the existing schemes in terms of



memory size and computation time is blown up by a factor of at least two and
eight, respectively.

Finally, we present a direct construction of a WIB-KEM scheme in the stan-
dard (i.e., non-random-oracle) model based on the HIB-KEM scheme by Kiltz and
Galindo [15], which on its turn is based on Waters’ HIBE scheme [20]. Note that the
original version of the Kiltz-Galindo HIB-KEM scheme [14] is insecure, a fact which
was noticed in [17], but the updated scheme in [15] does not suffer from the same
weakness. We compare our scheme’s efficiency to that of the only standard-model
CCA-secure scheme in [1], namely the scheme obtained by applying their generic
CCA transformation to the WIBE scheme based on Waters’ HIBE. For fair com-
parison, we consider the optimised variant suggested in the full version of [1] that
takes advantage of the fact that intermediate levels only contain one-bit identities.
Our scheme is twice as efficient as the non-random-oracle scheme of [1] in terms
of secret key size and pairing computations during decapsulation. The difference
with regard to ciphertext size and encapsulation time is less pronounced, but this
is disregarding the difference in security loss. As argued above, taking the security
loss into account significantly blows up the costs of the scheme of [1]. For complete-
ness, we should add that Fig. 1 hides the fact that our scheme relies on a hash
function with a slightly stronger security assumption than the standard notion of
second-preimage resistance.

2 Definitions

2.1 Notation

We first introduce some notation that we will use throughout the paper. We let
{0, 1}n denotes the set of bitstrings of length n, {0, 1}≤n denote the set of bitstrings
of length at most n, and {0, 1}∗ denote the set of bitstrings of arbitrary length. The
notation x

$← S denotes that x is assigned the value of an element selected uniformly
at random from the set S. If A is an algorithm, then x ← AO(y, z) assigns to x
the output of running A on inputs y and z, with access to oracle O. A may be
deterministic or probabilistic.

2.2 Syntax of WIBE Schemes, WIB-KEMs and DEMs

Syntax of WIBE schemes. A pattern P is a tuple (P1, . . . , Pl) ∈ ({0, 1}∗∪{∗})l,
for some l ≤ L, where L is the maximum number of levels. An identity ID =
(ID1, . . . , IDl′) “matches” the pattern P if l′ ≤ l and for all 1 ≤ i ≤ l′, IDi = Pi

or Pi = ∗. We write this as ID ∈∗ P . A WIBE scheme of depth L consists of the
following algorithms:

– Setup generates a master key pair (mpk ,msk).
– KeyDer(dID, IDl+1) takes the secret key dID for ID = (ID1, . . . , IDl), generates

a secret key dID′ for the identity ID′ = (ID1, . . . , IDl+1). The root user, who
has identity ε = (), uses dε = msk as his private key. This will be used to derive
keys for single level identities.

– Encrypt(mpk , P, m) encrypts a message m ∈ {0, 1}∗ intended for all identities
matching a pattern P , and returns a ciphertext C.

– Decrypt(dID, C) decrypts ciphertext C using the secret key dID for an identity
ID ∈∗ P and returns the corresponding message m. If the encryption is invalid,
the Decrypt algorithm “rejects” by outputting ⊥.

We will overload the notation for key derivation, writing KeyDer(msk , ID) to mean
repeated application of the key derivation function in the obvious way. Soundness



requires that for all key pairs (mpk ,msk) output by Setup, all 0 ≤ l ≤ L, all
patterns P ∈ ({0, 1}∗∪{∗})l, all identities ID such that ID ∈∗ P , and all messages
m ∈ {0, 1}∗:

Pr [Decrypt(KeyDer(msk , ID),Encrypt(mpk , P, m)) = m] = 1 .

Syntax of WIB-KEMs. We will now define an Identity-Based Key Encapsulation
Mechanism with Wildcards (WIB-KEM). A WIB-KEM consists of the following
algorithms:

– Setup and KeyDer algorithms are defined as in the WIBE case.
– Encap(mpk , P ) takes the master public key mpk of the system and a pattern P ,

and returns (K, C), where K ∈ {0, 1}λ is a one-time symmetric key and C is
an encapsulation of the key K.

– Decap(mpk , dID, C) takes a private key dID for an identity ID ∈∗ P and an en-
capsulation C, and returns the corresponding secret key K. If the encapsulation
is invalid, the Decap algorithm “rejects” by outputting ⊥.

A WIB-KEM must satisfy the following soundness property: for all pairs (mpk ,msk)
output by Setup, all 0 ≤ l ≤ L, all patterns P ∈ ({0, 1}∗ ∪ {∗})l, and all identities
ID ∈∗ P ,

Pr [K ′ = K : (K, C)← Encap(mpk , P );K ′ ← Decap(KeyDer(msk , ID), C)] = 1 .

HIBE schemes and HIB-KEMs can be thought of as special cases WIBEs and WIB-
KEMs restricted to patterns without wildcards.

Syntax of DEMs. A DEM consists of a pair of deterministic algorithms:

– Encrypt(K, m) takes a key K ∈ {0, 1}λ, and a message m of arbitrary length
and outputs a ciphertext C.

– Decrypt(K, C) takes a key K ∈ {0, 1}λ and a ciphertext C and outputs either
the corresponding message m or the “reject” symbol ⊥.

The DEM must satisfy the following soundness property: for all K ∈ {0, 1}λ, for all
m ∈ {0, 1}∗, Decrypt(K, Encrypt(K, m)) = m.

2.3 Security Notions

Security games for WIBEs, WIB-KEMs and DEMs are presented in Figure 2. In
all four games, s is some state information and O denotes the oracles the adversary
has access to. In the OW-WID game, M denotes the message space of the WIBE.
This will depend on the system parameters.

Security of WIBE schemes. We use the security definitions of indistinguisha-
bility under chosen-plaintext and chosen-ciphertext as per [1]. In both WIBE se-
curity games shown in Figure 2, A has access to a private key extraction oracle,
which given an identity ID outputs dID ← KeyDer(msk , ID). In the CCA model
only, A also has access to a decryption oracle, which on input (C, ID), returns
m← Decrypt(KeyDer(msk , ID), C).

The adversary wins the IND-WID game (as shown in Figure 2) if b′ = b and it
never queried the key derivation oracle on any identity matching the pattern P ∗.
Furthermore, in the CCA model, the adversary must never query the decryption
oracle on (ID,C∗), for any ID matching the pattern P ∗. We define the advantage
of the adversary as ε = |2 Pr[b′ = b]− 1|.

The adversary wins the OW-WID-CPA game if m′ = m and it never queried
the key derivation oracle on any identity matching the pattern P ∗. We define the
advantage of the adversary to be ε = Pr[m′ = m].



IND-WID security game for WIBEs:

1. (mpk ,msk)← Setup
2. (P ∗, m0, m1, s)← AO1 (mpk)

3. b
$← {0, 1}

4. C∗ ← Encrypt(mpk , P ∗, mb)
5. b′ ← AO2 (C∗, s)

OW-WID security game for WIBEs:

1. (mpk ,msk)← Setup
2. (P ∗, s)← AO1 (mpk)

3. m
$←M

4. C∗ ← Encrypt(mpk , P ∗, m)
5. m′ ← AO2 (C∗, s)

IND-WID security game for WIB-KEMs:

1. (mpk ,msk)← Setup
2. (P ∗, s)← AO1 (mpk)
3. (K0, C

∗)← Encap(mpk , P ∗)

4. K1
$← {0, 1}λ

5. b
$← {0, 1}

6. b′ ← AO2 (Kb, C
∗, s)

IND security game for DEMs:

1. (m0, m1, s)← A1()

2. K
$← {0, 1}λ

3. b
$← {0, 1}

4. C∗ ← Encrypt(K, mb)
5. b′ ← AO2 (C∗, s)

Fig. 2. Security games for WIBEs, WIB-KEMs and DEMs

Security of WIB-KEMs. In the IND-WID game for WIB-KEMs (also shown
in Figure 2) A has access to a private key extraction oracle, which given an iden-
tity ID outputs dID ← KeyDer(msk , ID). In the CCA model only, A addition-
ally has access to a decapsulation oracle, which on input (ID,C), returns K ←
Decap(KeyDer(msk , ID), C).

Again, the adversary wins the IND-WID game if b′ = b and it never queried the
key derivation oracle on any identity matching the pattern P ∗. Furthermore, in the
CCA model, the adversary must never query the decapsulation oracle on (C∗, ID),
for any ID matching the pattern P ∗. We define the advantage of the adversary as
ε = |2 Pr[b′ = b]− 1|.

Security of DEMs. In the IND-CPA game for DEMs, the adversary has access to
no oracles. In the IND-CCA model, A2 may call a decryption oracle, which on input
C 6= C∗ returns m ← Decrypt(K, C). Note that this oracle is only available in the
second phase of the attack. The adversary wins if b′ = b. We define the advantage
of the adversary as ε = |2 Pr[b′ = b]− 1|.

Definition 1 A WIBE scheme (resp. WIB-KEM) is (t, qK , ε) IND-WID-CPA se-
cure if all time t adversaries making at most qK queries to the key derivation oracle
have advantage at most ε in winning the IND-WID-CPA game described above.

Definition 2 A WIBE scheme (resp. WIB-KEM) is (t, qK , qD, ε) IND-WID-CCA
secure if all time t adversaries making at most qK queries to the key derivation
oracle and at most qD queries to the decryption (resp. decapsulation) oracle have
advantage at most ε in winning the IND-WID-CCA game described above.

The (t, qK , ε) IND-HID-CPA and (t, qK , qD, ε) IND-HID-CCA security of a HIBE
scheme and HIB-KEM are defined analogously.

Definition 3 A WIBE scheme is (t, qK , ε) OW-WID-CPA secure if all time t ad-
versaries making at most qK queries to the key derivation oracle have advantage at
most ε in winning the OW-WID-CPA game described above.

Definition 4 A DEM is (t, qD, ε) IND-CCA secure if all time t adversaries mak-
ing at most qD decryption queries in the the IND-CCA game described above has
advantage at most ε.



When working in the random oracle model, we add the number of queries made
to the oracle as a parameter, so for example we would say a WIBE is (t, qK , qD, qH , ε)
IND-WID-CCA secure, where qH is the total number of hash queries. The other
definitions may be adapted in a similar manner.

3 Security of the Hybrid Construction

Suppose we are given an IND-WID-CCA secure WIB-KEM scheme WIB-KEM =
(Setup,KeyDer,Encap,Decap) and an IND-CCA secure data encapsulation method
DEM = (Encrypt,Decrypt). Let us also suppose that the length λ of keys generated
by the WIB-KEM is the same as the length of keys used by the DEM. Then,
following the method of [11], we can combine them to form a WIBE scheme WIBE =
(Setup,KeyDer,Encrypt′,Decrypt′) as follows:

– Encrypt′(mpk , P, m): Compute (K, C1)← Encap(mpk , P ), C2 ← Encrypt(K, m).
Return C = (C1, C2).

– Decrypt′(dID, C): Parse C as (C1, C2). If the parsing fails, return ⊥. Otherwise,
compute K ← Decap(dID, C1). If Decap rejects, return ⊥. Finally, compute
m← Decrypt(K, C2), and return m.

Theorem 5 Suppose there is a (t, qK , qD, ε)-adversary A = (A1,A2) against IND-
WID-CCA security of the hybrid WIBE. Then there is a (tB, qK , qD, εB)-adversary
B = (B1,B2) against the IND-WID-CCA security of the WIB-KEM and a (tC , qD, εC)-
adversary C = (C1, C2) against the IND-CCA security of the DEM such that:

tB ≤ t + qDtDec + tEnc

tC ≤ t + qD(tDec + tDecap + tKeyDer) + qKtKeyDer + tEncap + tSetup

ε = εB + εC

where tEnc is the time to run the DEM’s Encrypt algorithm, tDec is the time to run
the DEM’s Decrypt algorithm, tSetup is the time to run Setup, tDecap is the time to
run Decap and tKeyDer is the time to run KeyDer.

The theorem and proof are straightforward generalisations to the WIBE case
of those in [11]. The proof is given in Appendix B Intuitively, the construction is
secure as the KEM generates a one time symmetric key K, which “looks” random
to the adversary, (i.e. is computationally indistinguishable from random) and this
is enough for the DEM to be secure.

4 A Generic Construction in the Random Oracle Model

One approach to building systems secure against adaptive chosen ciphertext attacks
is to first construct a primitive that is secure against passive attacks, and use some
generic transformation to produce a system secure against the stronger adaptive
attacks. We will apply a method proposed by Dent in [12] which converts an OW-
CPA secure probabilistic encryption scheme into an IND-CCA KEM. We will use
the same idea to convert an OW-WID-CPA secure WIBE scheme into an IND-WID-
CCA secure WIB-KEM. Suppose we have an OW-WID-CPA secure probabilistic
WIBE scheme WIBE = (Setup,KeyDer,Encrypt,Decrypt) with message space M.
We will write Encrypt(mpk , P ∗,m; r) to mean running the encryption algorithm
with inputs (mpk , P ∗,m) using a ρ-bit string of randomness r. We require that for
all master keys mpk generated by Setup, all patterns P , all messages m ∈ M and
all ciphertexts C:

Pr
[
Encrypt(mpk , P, m; r) = C : r

$← {0, 1}ρ
]
≤ γ



where γ is a parameter of the scheme.
The only difficulty in applying the method of Dent [12] is that we must re-

encrypt the recovered message as an integrity check. In the WIBE setting, this
means we must know the pattern under which the message was originally encrypted.
We assume that the set W = {i ∈ Z : Pi = ∗} is easily derived from the ciphertext.
This is certainly possible with the Waters and BBG based WIBEs presented in [1].
If a scheme does not already have this property, it could be modified so that the
set W is included explicitly as a ciphertext component. W can then be used to
give an algorithm P, which on input (ID,C), where C is a ciphertext and ID =
(ID1, . . . , IDl) is an identity, returns the pattern P = (P1, . . . , Pl) given by Pi = ∗
for i ∈W(C) and Pi = IDi otherwise.

We will use WIBE to construct an IND-WID-CCA secure WIB-KEM

WIB-KEM = (Setup,KeyDer,Encap,Decap)

using two hash functions H1 : {0, 1}∗× ({0, 1}n∪{∗})→ {0, 1}ρ and H2 : {0, 1}∗ →
{0, 1}λ, where λ is the length of keys output by the WIB-KEM. The algorithms of
the WIB-KEM are given by:

– Setup and KeyDer are exactly as in WIBE .
– Encap(mpk , P ): Choose a random message m

$← M. Compute r ← H1(m,P ),
K ← H2(m) and compute C ← Encrypt(mpk , P, m; r). Return (K, C)

– Decap(dID, C): Compute m← Decrypt(dID, C). If m = ⊥, return ⊥. Compute
r ← H1(m,P(ID,C)) and check that C = Encrypt(mpk ,P(ID,C),m; r). If so,
return K ← H2(m); otherwise return ⊥.

Theorem 6 Suppose there is a (t, qK , qD, qH , ε) adversary A against the IND-
WID-CCA security of the WIB-KEM in the random oracle model. Then there is
a (t′, qK , ε′) adversary B against the OW-WID-CPA security of the WIBE, where:

ε′ ≥ (ε− qD

( 1
|M|

+ γ
)
)/(qD + qH)

t′ ≤ t + qHtH + qDqHtEnc

where tEnc is the time taken to do an encryption, and tH is the time needed to look
up a hash value in a list.

This proof of this theorem is a straightforward generalisation of the result of
Dent [12]. The proof is given in Appendix C.

5 A Direct Construction without Random Oracles

5.1 The Kiltz-Galindo HIB-KEM

We present a construction for a WIB-KEM based on the Kiltz-Galindo HIB-KEM
[15]. This construction is based on the Waters HIBE [20] and belongs to the Boneh-
Boyen family of identity-based encryption schemes [6]. Before presenting our con-
struction, we briefly recall the definitions for bilinear maps and second-preimage
resistant hash functions:

Definition 7 (Bilinear map) Let G = 〈g〉 and GT be multiplicative groups of
prime order p. We say that e : G × G → GT is an admissible bilinear map if the
following hold true:

– For all a, b ∈ Zp we have e(ga, gb) = e(g, g)ab.



– e(g, g) is not the identity element of GT.
– e is efficiently computable.

Definition 8 (BDDH problem) We say that the BDDH problem in G is (t, ε)-
hard if ∣∣∣Pr

[
A(ga, gb, gc, e(g, g)abc) = 1 : a, b, c

$← Zp

]
− Pr

[
A(ga, gb, gc, e(g, g)d) = 1 : a, b, c, d

$← Zp

] ∣∣∣ ≤ ε

for any algorithm A running in time at most t.

Definition 9 (Second-preimage resistant hash function) A family F{k∈K} :
G→ Zp of hash functions with key space K is called (t, ε) second-preimage resistant
if all time t algorithms A have advantage at most ε, where the advantage of A is
defined by:

Pr[x 6= y ∧ Fk(x) = Fk(y) : x
$← G; k $← K; y ← A(k, x)] .

In principle, a key k for the hash function should be included as part of the public
parameters, but to simplify the description of the scheme, we will treat the family
of hash functions as if it were a fixed function.

We recall the Kiltz-Galindo HIB-KEM [15] in Figure 3. Note that the identities
at each level are assumed to be n bits long i.e., IDi ∈ {0, 1}n, and we set

[IDi] = {1 ≤ j ≤ n : the jth bit of IDi is one} .

We assume the function h1 : G→ Z∗p is a second-preimage resistant hash function.
The security of the Kiltz-Galindo scheme rests on the bilinear decisional Diffie-
Hellman (BDDH) problem. Kiltz and Galindo proved the following security result
of their scheme.

Theorem 10 If there exists a (t, qK, qD, ε) attacker for the Kiltz-Galindo HIB-KEM
in the IND-HID-CCA model, then there exists a (t′, ε′) algorithm which solves the
BDDH problem in G and a (th, εh) attacker against the second pre-image resistance
property of h1 such that t′ ≤ t + O(ε−2 · ln(ε−1)), th ≤ O(t) and

ε′ ≥ ε− εh

(10(n + 1)q)L
− q/p ,

where q = qK + qD and p is the order of G.

Note that the Kiltz-Galindo scheme generates keys which are elements of the
group GT, and we will follow this practise in our construction of the WIB-KEM.
However, our definition of a WIB-KEM requires that the keys it generates are
bitstrings. This discrepancy can be overcome by hashing the group element used as
the key using a smooth hash function. A hash function h : GT → {0, 1}λ is ε-smooth
if for all K ∈ {0, 1}λ and for all z ∈ G∗

T, the probability

Pr[h(zr) = K : r
$← Zp] = 1/2λ + ε .

5.2 The Kiltz-Galindo WIB-KEM

We attempt to build a WIB-KEM using a similar approach to that of Kiltz-Galindo
[15] using the techniques of Abdalla et al. [1]. A naive implementation might try to
construct an encapsulation algorithm as follows:



Algorithm Setup:

v1, v2, v3, α
$← G ; z ← e(g, α)

ui,j
$← G for i = 1 . . . L, j = 0 . . . n

mpk ← (v1, v2, v3, u1,0, . . . , uL,n, z)
msk ← α
Return (mpk ,msk)

Algorithm KeyDer(d(ID1,...,IDl), IDl+1):
Parse d(ID1,...,IDl) as (d0, . . . , dl)

sl+1
$← Z∗

p ; d′l+1 ← gsl+1

d′0 ← d0 ·
“
ul+1,0

Q
j∈IDl+1

ul+1,j

”sl+1

Return (d′0, d1, . . . , dl, d
′
l+1)

Algorithm Encap(mpk , ID):
Parse ID as (ID1, . . . , IDl)

r
$← Z∗

p ; C0 ← gr ; t← h1(C0)
For i = 1 . . . l do

Ci ←
“
ui,0

Q
j∈[IDi]

ui,j

”r

Cl+1 ← (vt
1v

l
2v3)

r

K ← zr

Return (K, (C0, . . . , Cl+1))

Algorithm Decap(d(ID1,...,IDl), C):
Parse d(ID1,...,IDl) as (d0, . . . , dl)
Parse C as (C0, . . . , Cl+1)
t← h1(C0)

If any of (g, C0, vt
1v

l
2v3, Cl+1)

or (g, C0, ui,0

Q
j∈[IDi]

ui,j , Ci),

for i = 1 . . . l is not a DH tuple
then K ←⊥
else K ← e(C0, d0)/

Ql
i=1 e(Ci, di)

Return K

Fig. 3. The Kiltz-Galindo HIB-KEM scheme.

– Encap(mpk , P ) : Parse the pattern P as (P1, . . . , Pl) ∈ ({0, 1}n ∪ {*})l. Pick
r

$← Z∗p, set C0 ← gr, and for 1 ≤ i ≤ l compute Ci as

Ci ←
{(

ui,0

∏
j∈[Pi]

ui,j

)r if Pi 6= *(
ur

i,0, . . . , u
r
i,n

)
if Pi = * .

Finally, compute t← h1(C0), and Cl+1 ← (vt
1v

l
2v3)r.

The ciphertext C = (C0, . . . , Cl+1) is the encapsulation of key K = zr.

However, such an implementation would be insecure in the IND-WID-CCA model.
An attacker could output a challenge pattern P ∗ = (∗) and would receive a key K
and an encapsulation (C0, C1, C2) where C0 = gr∗ and C1 = (ur∗

0 , . . . , ur∗

n ). It would
be simple for the attacker then to construct a valid encapsulation of the same key
for a particular identity ID by setting C ′

1 ← ur∗

0

∏
j∈[ID] u

r∗

i . Thus, submitting the
identity ID and the ciphertext (C0, C

′
1, C2) to the decryption oracle will return the

correct decapsulation of the challenge.
This attack demonstrates the importance of knowing the location of the wild-

cards that were used to create an encapsulation. We solve this problem by increasing
the scope of the hash function h1. In the original proof of security, the hash func-
tion prevents an attacker from submitting a valid ciphertext C to the decapsulation
oracle where C has the same decapsulation as C∗ but C0 6= C∗

0 . We extend this
to prevent an attacker from submitting a valid ciphertext C to the decapsulation
oracle where C has the same decapsulation but either C0 6= C∗

0 or C and C∗ have
wildcards in different positions. To do this we make use of a function h2, which on
input of a pattern P = (P1, . . . , Pl), returns a bitstring b1b2 . . . bl, where bi = 1 if
Pi is a wildcard, otherwise bi = 0. Note that two patterns P1, P2 have wildcards in
the same location if and only if h2(P1) = h2(P2).

However, since an attacker can submit ciphertexts to the decapsulation oracle
with patterns of his own choice, the increased scope of the hash function means that
we have to rely on a slightly stronger assumption than standard second-preimage
resistance. Informally, we will require the hash function to be second-preimage re-
sistant, even when the attacker is allowed to choose the first L bits (corresponding
to h2(P )) of the challenge input for which he tries to find a collision. We formally
define this property as follows:



Definition 11 (Extended second-preimage resistant hash function) A fam-
ily F{k∈K} : {0, 1}≤L × G → Zp of hash functions with key space K is called (t, ε)
extended second-preimage resistant if all time t algorithms A have advantage at
most ε, where the advantage of A is defined by

Pr[(lx, x) 6= (ly, y) ∧ Fk(lx, x) = Fk(ly, y) : x
$← G; k $← K; (lx, ly, y)← A(k, x)] .

As in the description of the Kiltz-Galindo HIB-KEM, we will treat the family of
hash functions as a fixed function to simplify the description of our scheme.

– Setup : Pick random elements v1, v2, α
$← G and compute z ← e(α, g) where g

is the generator of G. Furthermore, pick elements ui,j
$← G for 1 ≤ i ≤ L and

0 ≤ j ≤ n. The master public key is mpk = (v1, v2, u1,0, . . . , uL,n, z) and the
master secret is msk = α.

– KeyDer(msk , ID1) : Pick s1
$← Zp. Compute d0 ← α(u1,0

∏
j∈[ID1]

u1,j)s1 and
d1 ← gs1 . The private key for ID1 is (d0, d1). This can be thought of as an
example of the next algorithm where the decryption key for the null identity is
d0 ← α.

– KeyDer(dID, IDl+1) : Parse the private key dID for ID = (ID1, . . . , IDl) as
(d0, . . . , dl). Pick sl+1

$← Zp and compute d′l+1 ← gsl+1 . Lastly, compute

d′0 ← d0 ·
(
ul+1,0

∏
j∈[IDl+1]

ul+1,j

)sl+1

.

The private key for ID′ = (ID1, . . . , IDl, IDl+1) is dID′ = (d′0, d1, . . . , dl, d
′
l+1).

– Encap(mpk , P ) : Parse the pattern P as (P1, . . . , Pl) ∈ ({0, 1}n ∪ {*})l. Pick
r

$← Z∗p, set C0 ← gr, and for 1 ≤ i ≤ l compute Ci as

Ci ←
{(

ui,0

∏
j∈[Pi]

ui,j

)r if Pi 6= *(
ur

i,0, . . . , u
r
i,n

)
if Pi = * .

If Pi = * we will use the notation Ci,j to mean the jth component of Ci i.e.
ur

i,j . Finally, compute t ← h1(h2(P ), C0), and Cl+1 ← (vt
1v2)r. The ciphertext

C = (C0, . . . , Cl+1) is the encapsulation of key K = zr.
– Decap(dID, C) : Parse dID as (d0, . . . , dl′) and C as (C0, . . . , Cl+1). First com-

pute t ← h1(h2(P ), C0) where P is the pattern under which C was encrypted.
Note that h2(P ) is implicitly given by C, even though P is not. Test whether

(g , C0 , vt
1v2 , Cl+1)

(g , C0 , ui,0

∏
j∈[IDi]

ui,j , Ci) for 1 ≤ i ≤ l, Pi 6= *

(g , C0 , ui,j , Ci,j) for 1 ≤ i ≤ l, Pi = *, 0 ≤ j ≤ n

are all Diffie-Hellman tuples. If not, return ⊥. Rather than doing this test in
the naive way by performing two pairing computations for each tuple, they can
be aggregated in a single test as follows. Choose random exponents r

$← Zp,
ri

$← Zp for Pi 6= * and ri,j
$← Zp for Pi = *, 0 ≤ j ≤ n, compute

A ← (vt
1v2)r ·

∏
Pi 6=*

(
ui,0

∏
j∈[IDi]

ui,j

)ri

·
∏

Pi=*

n∏
j=0

u
ri,j

i,j

B ← Cr
l+1 ·

∏
Pi 6=*

Cri
i ·

∏
Pi=*

n∏
j=0

C
ri,j

i,j



and check whether e(g,B) = e(C0, A). If one or more of the tuples are not
Diffie-Hellman tuples, this test fails with probability 1 − 1/p. If it succeeds,
decapsulate the key by first setting

C ′
i ←

{
Ci if Pi 6= *
Ci,0

∏
j∈[IDi]

Ci,j if Pi = *
for 1 ≤ i ≤ l′

and then computing K ← e(C0, d0)/
∏l′

i=1 e(C ′
i, di).

Soundness. Given a correctly formed encapsulation C = (C0, . . . , Cl+1) of a key
K = zr for a pattern P , it can be verified that decapsulation of C with a private
key dID = (d0, . . . , dl′) for ID ∈∗ P yields the correct key since

e(C0, d0)∏l′

i=1 e(C ′
i, di)

=
e
(
gr, α

∏l′

i=1

(
ui,0

∏
j∈[IDi]

ui,j

)si
)

∏l′

i=1 e
((

ui,0

∏
j∈[IDi]

ui,j

)r
, gsi

)
=

e(gr, α)
∏l′

i=1 e
(
gr,

(
ui,0

∏
j∈[IDi]

ui,j

)si
)

∏l′

i=1 e
((

ui,0

∏
j∈[IDi]

ui,j

)r
, gsi

)
= e(g, α)r

= zr .

Thus the scheme is sound.

Theorem 12 If there exists a (t, qK, qD, ε) attacker for the Kiltz-Galindo WIB-
KEM in the IND-WID-CCA model, then there exists a (t′, ε′) algorithm which solves
the BDDH problem in G and a (th, εh) attacker against the extended second pre-
image resistance property of h1 such that t′ ≤ t + O(ε−2 · ln(ε−1)), th ≤ O(t) and

ε′ ≥ ε− εh − qD/p

L(20(n + 1)qK)L
,

where p is the order of G.

The proof is given in Appendix A.
Note that, as is the case for all known HIBE and WIBE schemes, the security

of our WIB-KEM degrades exponentially with the maximal hierarchy depth L. The
scheme can therefore only be used for relatively small (logarithmic) values of L. We
leave the construction of a WIB-KEM with polynomial efficiency and security in all
parameters as an open problem. Any solution to this problem would directly imply
a WIBE and a HIBE scheme with polynomial security as well, the latter of which
has been an open problem for quite a while now.

We also note that the security proof for our construction can be completed, even
if the used hash function is only assumed to be standard second-preimage resistant.
However, this will add an additional security loss of L2L with respect to the hash
function. Considering that security already degrades exponentially with L, this will
not be a significant addition to the existing security loss and might be preferred
instead of introducing a stronger assumption about the hash function.

6 Conclusion

We have proposed new chosen-ciphertext secure instantiations of WIBE schemes
that improve on the existing schemes in both efficiency and security. To this end, we
extended the KEM–DEM framework to the case of WIBE schemes. We proposed



a generic construction in the random oracle model that transforms any one-way
secure WIBE into a chosen-ciphertext secure WIB-KEM. We also proposed a direct
construction of a WIB-KEM that is secure in the standard model. Our schemes
overall gain at least a factor two in efficiency, especially when taking into account
(as one should) the loose security bounds of all previously existing constructions.
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A Proof of security for Kiltz-Galindo WIB-KEM

Proof (Sketch). We combine the ideas of Abdalla et al. [1] and Kiltz-Galindo [15].
We will assume that starred variables correspond to the challenge ciphertext. For
example, P ∗ is the challenge pattern. Consider a polynomial-time attacker A. We
begin the proof by changing the conditions in which A is said to win the game
so that A wins the game if b = b′ and it never submitted a ciphertext C to the
decapsulation oracle with t = t∗. Since t = h1(h2(P ), C0) and the pair (C0, P )
uniquely defines the entire ciphertext, this collision can only occur if A submits
the ciphertext C∗ to the decapsulation oracle before the challenge phase (which
can occur with probability at most qD/p since r is chosen at random) or if there
is an extended second pre-image collision in the hash function (which occurs with
probability at most εh).

We now show that we can reduce the security of the scheme in this game to
the DBDH problem. We begin by guessing the length of the challenge pattern
and the position of the wildcards within the pattern. We guess this correctly with
probability at least 1/(L2L) and we abort if the attacker outputs a challenge pattern
that differs from our guess or if the attacker makes an oracle query in the first stage
that implies that our guess is incorrect. Let W ⊆ {1, 2, . . . , L} be the set of integers
corresponding to the levels at which the wildcards appear in the challenge pattern.

The basic principle of the proof is to handle levels i /∈ W in exactly the same
way as in the Kiltz-Galindo proof and to handle levels i ∈ W in a naive way. We
may extract private keys for identities in the same way as in the Waters HIBE. If



we guess the position of the wildcards in the challenge pattern correctly, then this
will mean we can extract private keys for all valid queries made by the attacker.

Note that since we have guessed the length and the location of the wildcards in
the challenge pattern, we may immediately compute h2(P ∗) even though we do not
know the value of P ∗.

Setup Our simulator takes as input a BDDH instance (ga, gb, gc, Z). We will use
gc as C∗

0 in the challenge ciphertext. Hence, we can immediately compute t∗ ←
h1(h2(P ∗), C∗

0 ). We use this to construct the public parameters for the encryption
scheme as follows:

v1 ← ga d
$← Zp v2 ← (ga)−t∗gd z ← e(ga, gb) m← 2q

Note that this implicitly defines α = gab. For each level i /∈W we compute

ki ← {1, . . . , n} xi,0, xi,1, . . . , xi,n
$← Zp yi,0, yi,1, . . . , yi,n

$← {0, . . . ,m− 1}
ui,0 ← gxi,0v

yi,0−km
1 ui,j ← gxi,j v

yi,j

1 for 1 ≤ j ≤ n

For each level i ∈W we compute

xi,0, xi,1, . . . , xi,n
$← Zp ui,j ← gxi,j for 0 ≤ j ≤ n

We define the functions

Fi(IDi)← −mki + yi,0 +
∑

j∈[IDi]

yi,j

Ji(IDi)← xi,0 +
∑

j∈[IDi]

xi,j

Ki(IDi)←
{

0 if yi,0 +
∑

j∈[IDi]
yi,j ≡ 0 mod m

1 otherwise

Note that Fi(IDi) ≡ 0 mod q if and only if Fi(IDi) = 0, and so we have that
Fi(IDi) ≡ 0 mod q implies Ki(IDi) = 0. Therefore, if Ki(IDi) = 1 then Fi(IDi)
can be inverted modulo q.

Key extraction oracle queries. Suppose an attacker makes a key extraction
oracle query on the identity ID = (ID1, . . . , IDl). If this query is legal, then ID /∈∗
P ∗, which means that there must exists an integer i′ such that IDi′ 6= Pi′ 6= ∗. We
demand that Ki′(IDi′) = 1. This will occur with probability at least 1 − 1/m. To
extract the private key for ID we randomly choose r1, r2, . . . , rl

$← Zp and compute

d0 ← v
−

J
i′ (ID

i′ )
F

i′ (ID
i′ )

1

∏l
i=1(ui,0

∏
j∈[IDi]

ui,j)ri

di′ ← v
− 1

F
i′ (ID

i′ )

1 gri′ di ← gri for all i 6= i′ .

A simple computation can verify that (d0, . . . , dl) is a valid private key for ID. The
probability that such a private key can be computed for every key extraction oracle
query is at least (1 − 1/m)qK ≥ 1 − qK/m. At this stage, the probability that the
key extraction simulator fails may not be independent of the value of the message;
hence, we use artificial aborts to ensure that we abort with the same probability
regardless of the message value. By answering key extraction oracle queries in this
way, we fail to accurately simulate the key extraction oracle with probability at
most qK/m.

Decryption oracle queries. Suppose an attacker makes a decryption oracle query
for a ciphertext C = (C0, . . . , Cl+1) and an identity ID = (ID1, . . . , IDl). We first



check that the ciphertext is consistent, i.e. that

(g , C0 , vt
1v2 , Cl+1)

(g , C0 , ui,0

∏
j∈[IDi]

ui,j , Ci) for 1 ≤ i ≤ l, Pi 6= *

(g , C0 , ui,j , Ci,j) for 1 ≤ i ≤ l, Pi = *, 0 ≤ j ≤ n

are all Diffie-Hellman tuples, where t = h1(h2(P ), C0) and P is the pattern under
which the ciphertext was encrypted. If these tests fail, then the decryption oracle
(correctly) outputs ⊥. If the tests succeed and t 6= t∗ then we may decrypt the
ciphertext by computing K ← e

(
Cl+1/Cd

0 , gb
)1/(t−t∗).

The challenge ciphertext. We assume that we correctly guessed the location of
the wildcards in the challenge pattern P ∗ = (P ∗

1 , . . . , P ∗
l ). For every i /∈ W we

require that Fi(IDi) = 0. This will occur with probability at least 1/(nm)L (as we
require Ki(IDi) = 0 and the correct value ki to have been chosen). The challenge
ciphertext is then built as follows. We set

K∗ ← Z C∗
0 ← gc C∗

l+1 ← (gc)d .

For each i /∈W , we set
C∗

i ← (gc)Ji(IDi) .

For each i ∈W , we set

C∗
i,j ← (gc)xi,j for all 1 ≤ j ≤ n .

It is clear to see that if the attacker can distinguish a valid key K from a randomly
generated key K, then they will have distinguished a random value Z from the value
Z = e(g, g)abc. Hence, providing our simulation is correct, the simulator solves the
BDDH problem whenever the attacker breaks the WIB-KEM. ut

B Proof of security for the hybrid construction

We now restate the theorem of Section 3:

Theorem 13 Suppose there is a (t, qK , qD, ε)-adversary A = (A1,A2) against IND-
WID-CCA security of the hybrid WIBE. Then there is a (tB, qK , qD, εB)-adversary
B = (B1,B2) against the IND-WID-CCA security of the WIB-KEM and a (tC , qD, εC)-
adversary C = (C1, C2) against the IND-CCA security of the DEM such that:

tB ≤ t + qDtDec + tEnc

tC ≤ t + qD(tDec + tDecap + tKeyDer) + qKtKeyDer + tEncap + tSetup

ε = εB + εC

where tEnc is the time to run the DEM’s Encrypt algorithm, tDec is the time to run
the DEM’s Decrypt algorithm, tSetup is the time to run Setup, tDecap is the time to
run Decap and tKeyDer is the time to run KeyDer.

Proof. The proof is structured as a sequence of games. Let Game 1 be the original
game played by A against the WIBE.

If we write the operations of the hybrid scheme out in full, the game is as follows:

1. (mpk ,msk)← Setup
2. (P ∗,m0,m1, s)← AO1 (mpk)



3. b
$← {0, 1}

4. (K∗, C∗
1 )← Encap(mpk , P ∗)

5. C∗
2 ← Encrypt(K∗,mb)

6. b′ ← AO2 ((C∗
1 , C∗

2 ), s)

In the above, O represents the oracles that A is given access to. Since we are
working in the CCA model, these are the key derivation oracle, which on input ID
returns KeyDer(msk , ID), and the decryption oracle, which on input (ID, (C1, C2))
returns

Decrypt(Decap(KeyDer(msk , ID), C1), C2) .

A wins if both b′ = b, and it never requested the decryption key for any identity
ID matching the pattern P ∗ or queried the decryption oracle on (ID, (C∗

1 , C∗
2 )).

Let S1 be the event that A wins Game 1.
We now define a modified game, Game 2, as follows:

1. (mpk ,msk)← Setup
2. (P ∗,m0,m1, s)← AO1 (mpk)
3. b

$← {0, 1}
4. (K, C∗

1 )← Encap(mpk , P ∗)
5. K∗ $← {0, 1}λ
6. C∗

2 ← Encrypt(K∗,mb)
7. b′ ← AO2 ((C∗

1 , C∗
2 ), s)

The decryption oracle is modified so that in the second phase, after the chal-
lenge ciphertext (C∗

1 , C∗
2 ) has been issued, if it is queried on (ID, (C∗

1 , C2)), where
C2 6= C∗

2 , and ID is any identity matching the pattern P ∗, then it simply returns
Decrypt(K∗, C2). Let S2 be the event that A wins Game 2.

We now describe the (tB, qK , qD, εB)-adversary B = (B1,B2) against the IND-
WID-CCA security of the WIB-KEM. B1 takes a master public key mpk and runs
A1(mpk) which outputs (P ∗,m0,m1, s). It sets s′ = (P ∗,m0,m1, s) and outputs
(P ∗, s′).
B2 receives (K∗, C∗

1 , (P ∗,m0,m1, s)) as input and then chooses a random bit
d

$← {0, 1}. It then computes C∗
2 ← Encrypt(K∗,md) and runs A2((C∗

1 , C∗
2 ), s),

which outputs a bit d′. If d′ = d, B2 outputs 0, otherwise it outputs 1.

Key Derivation Queries: To respond to A’s key derivation queries, B simply
forwards the query to its own key derivation oracle.
Decryption Queries If A makes a decryption query on (ID, (C1, C2)), B queries
its decapsulation oracle on (ID,C1) and obtains a key K. If K = ⊥, B returns
⊥, otherwise it returns m ← Decrypt(K, C2). In the second phase, B2 responds as
before, except if it is queried on (ID, (C∗

1 , C2)) for any ID ∈∗ P ∗ and C2 6= C∗
2 , it

returns Decrypt(K∗, C2).

It is clear that if B’s challenger chooses bit b = 0, then the key K∗ is the correct
key encapsulated in C∗

1 , so A’s view of the game is exactly as in Game 1. This
implies that

Pr[S1] = Pr[d′ = d|b = 0] = Pr[b′ = 0|b = 0] .

Similarly, if the challenger chooses bit b = 1, then the key K∗ is chosen at
random, so A’s view of the game is exactly as in Game 2. So

Pr[S2] = Pr[d′ = d|b = 1] = Pr[b′ = 0|b = 1]

Combining these results and noting that



εB = |2 Pr[b′ = b]− 1| = |Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]

we get that
|Pr[S2]− Pr[S1]| = εB .

Running Time B runs A, performs one DEM decryption per decryption query
that A makes, and performs one DEM encryption for the challenge so B runs in
time

t′ ≤ t + qDtDec + tEnc .

Finally, there is a (tC , qD, εC)-adversary C = (C1, C2) against the IND-CCA se-
curity of the DEM such that

|Pr[S2]| = εC .

C1 generates (mpk ,msk)← Setup. It then runs A1(mpk) which outputs a tuple
(P ∗,m0,m1, s). It sets s′ = (P ∗,mpk ,msk , s) and outputs (m0,m1, s

′). C2 receives
(C∗

2 , s′) from the challenger, parses s′ as (P ∗,mpk ,msk , s) and computes (K, C∗
1 )←

Encap(mpk , P ∗). Finally, it runs A2((C∗
1 , C∗

2 ), s) which outputs b′, and C2 outputs
b′.

Key Derivation Queries To respond to A’s key derivation queries, C simply uses
the KeyDer algorithm and the master secret key which it knows.
Decryption Queries If A makes a decryption query on (ID, (C1, C2)) for some
C1 6= C∗

2 , B computes Decrypt(Decap(KeyDer(msk , ID), C1), C2). In the second
phase, it responds to queries where C1 = C∗

1 by passing C2 to it’s own decryp-
tion oracle and returning the result.

A’s view of this simulation is identical to Game 2, since the key used by the
IND-CCA challenger is randomly chosen and unrelated to the encapsulation C∗

1 , so

|Pr[S2]−
1
2
| = |Pr[b′ = b]− 1

2
| = εC .

Running Time C runs Setup, runs A, performs one KEM encapsulation in the
challenge phase and performs qK key derivation operations, and qD decryptions,
decapsulations and key derivations. So C runs in time

tC ≤ t + qD(tDec + tDecap + tKeyDer) + qKtKeyDer + tEncap + tSetup .

Combining these results, we get

ε = εB + εC .

ut

C Proof of security for the generic construction

We will prove this using a sequence of games in the manner of [24]. In particular,
we will need the following lemma:

Lemma 1 (Difference Lemma). Let A, B and F be events, and suppose that
A ∧ ¬F is equivalent to B ∧ ¬F . Then |Pr[A]− Pr[B]| ≤ Pr[F ].

The lemma is proved in [24].



Proof (Proof of Theorem 6).
Let Game 1 be the original attack game against the WIB-KEM. We define a

modified game, Game 2, which is the same as Game 1, but in Game 2, the adversary
may not query the Decap oracle on (ID,C∗) for any identity ID ∈∗ P ∗ at any time.
In the second phase this is already forbidden, but we must consider the possibility
that it makes such a query in the first phase of the game. Although the challenge
pattern and challenge ciphertext are not yet defined in the first phase because the
ciphertext is generated properly by the challenger at the start of the second phase,
it is equivalent to consider the event that the challenger generates a ciphertext on
which the adversary has already queried the decapsulation oracle.

Let E1 be the event that the challenge ciphertext has already been queried to the
decapsulation oracle by A. Then Pr[E1] ≤ qD/|M|. This follows since each message
has exactly one valid encapsulation for a given pattern, and in the first phase the
adversary has no information about the challenge encapsulation.

By the difference lemma, the advantage ε2 of A in Game 2 satisfies

|ε2 − ε| ≤ qD

|M|
.

We now define a modified game, Game 3, which is the same as Game 2, but we
respond to the oracle queries as follows:

– Hash queries: The H1 and H2 oracles are simulated by making use of two lists,
H1-list and H2-list, which are initially empty. To respond to the adversary’s
query Hi(x), we first check if there is a pair (x, h) in the Hi-list. If so, we return
h, otherwise we query h← Hi(x) to the real oracle, append (x, h) to the Hi-list
and return h.

– KeyDer queries: These are handled as in the original game.
– Decap queries: To respond to a decapsulation query on (ID,C), we look for a

pair (m,h) in the H1-list which satisfies Encrypt(mpk ,P(ID,C),m;h) = C. If
one exists, we compute K ← H2(m) using the method described above and
return K. Otherwise we return ⊥.

Game 3 proceeds exactly as Game 2 unless the following happens: Let E2

be the event that A makes a decapsulation query on (ID,C) such that m =
Decrypt(dID, C) and C = Encrypt(mpk ,P(ID,C),m;H1(m)), but A has not yet
queried H1 on m. Pr[E2] ≤ qDγ by definition of γ. Thus the advantage ε3 of A in
Game 3 satisfies

|ε3 − ε2| ≤ γqD .

Let E3 be the event that A queries H1 or H2 on m = Decrypt(dID, C∗), for some
ID ∈ P ∗. Since A has advantage ε3, it must make this query with probability at
least ε3. This is because in the random oracle model, A has no information about
the encapsulated key K unless it queries the random oracle on m.

We now construct an OW-WID-CPA adversary B = (B1,B2) using A as an
oracle.
B handles all oracle queries similarly to in Game 3 – passing key derivation

queries to its own oracle and using H1 and H2-lists to answer decryption queries.
The slight difference is that it generates the hash values at random for itself,

i.e it checks if there is a pair (x, h) in the Hi-list. If so, it returns h, otherwise
it generates a random string h of the appropriate length (ρ for H1 or λ for H2),
appends (x, h) into the Hi list and returns h. This accurately simulates the oracle.

Note that the simulation may add an entry to the H2-list whenever A makes an
H2 oracle query, or when A makes a decapsulation query, since H2 is used by the
decapsulation oracle. Hence, the size of the H2-list is bounded by qH2 + qD. The



simulation only adds an entry to the H1-list when a H1 oracle query is made; hence,
the size of the H1 list is bounded by qH1 .
B1 simply takes a master public key mpk , and runs A1(mpk). A returns (P ∗, s),

which B simply returns to its own challenger.
B2 takes (C∗, s) and checks if A1 queried the decapsulation oracle on (ID,C∗)

for any identity ID ∈∗ P ∗. If so, it outputs a random bit b′
$← {0, 1} and halts. If not,

it then generates a random bitstring K∗ $← {0, 1}λ and runs A2 on ((K∗, C∗), s).
When A2 terminates, B chooses a random message m from either the H1-list or
H2-list and returns this as its guess for the challenge message.
B simulates the environment of Game 3 exactly, at least until A queries H1 or

H2 on m = Decrypt(dID, C∗). Since A cannot detect this difference without making
one of these oracle queries, it must still make such a query with probability at least
ε3 as before, and B wins if it then chooses the correct value of m from the list,
which assuming the query was made occurs with probability 1/(qH1 + qH2 + qD) =
1/(qH + qD), hence the advantage of B is

ε′ = ε3/(qH + qD)

≥ (ε− qD

|M|
− γqD)/(qH + qD)

as required.
B must perform one hash list lookup for each hash query made by A, while

for each decryption query, it must perform at most qH encryptions to find the
corresponding entry in the hash list, so it’s running time is t+ qHtH + qDqHtEnc as
claimed.

The claim now follows. ut


