
Building Better Signcryption Schemes with
Tag-KEMs

Tor E. Bjørstad and Alexander W. Dent1

1Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, U.K.
torebj@gmail.com a.dent@rhul.ac.uk

Abstract. Signcryption schemes aim to provide all of the advantages of
simultaneously signing and encrypting a message. Recently, Dent [11, 12]
and Bjørstad [5] investigated the possibility of constructing provably se-
cure signcryption schemes using hybrid KEM-DEM techniques [10]. We
build on this work by showing that more efficient insider secure hybrid
signcryption schemes can be built using Tag-KEMs [1]. To prove the ef-
fectiveness of this construction, we will provide several examples of secure
signcryption Tag-KEMs, including a brand new construction based on
the Chevallier-Mames signature scheme [8] which has the tightest known
security reductions for both confidentiality and unforgeability.

1 Introduction

The signcryption primitive was introduced by Zheng in 1997 [17] to study asym-
metric schemes that offer most or all the benefits provided by public-key en-
cryption and signature schemes. Signcryption schemes must provide message
authenticity, confidentiality and integrity, and may also offer a way to provide
non-repudiation. As such, a signcryption scheme provides a secure, authenticated
channel for message transmission. Although Zheng only considered schemes that
are more computationally efficient than a direct composition of encryption and
signature schemes, the definition of signcryption is normally expanded to include
any asymmetric scheme that provides this functionality, regardless of efficiency.
Direct composition of public-key encryption and signatures has been studied by
An et.al. [2].

In order to obtain efficient encryption schemes in practice, hybrid tech-
niques are commonly used. The practice of combining symmetric and asym-
metric schemes to encrypt and transmit long messages efficiently has been com-
mon knowledge for many years. However, formal analysis was first performed
by Cramer and Shoup in the late 1990s [10]. The usual construction paradigm,
known as the KEM-DEM construction, consists of two parts: a key encapsula-
tion mechanism (KEM) and a data encapsulation mechanism (DEM). The KEM
uses asymmetric techniques to encrypt a symmetric key, while the DEM uses a
symmetric cipher to encrypt the message payload using the key from the KEM.

The main benefit of the KEM-DEM construction paradigm is that the security
of KEM and DEM may be analyzed separately.

The use of hybrid techniques to build signcryption schemes has been studied
by Dent [11–13] and Bjrstad [5]. This has provided a useful perspective for analy-
sis of those classes of signcryption schemes that use hybrid techniques. However,
previous efforts have yielded complex verification-decryption (unsigncryption)
algorithms, stemming from the need to verify a link between message, key and
encapsulation. This article will examine a way to simplify the hybrid construc-
tion through use of Tag-KEMs [1]. We show that adapting the Tag-KEM +
DEM construction to signcryption yields simpler scheme descriptions and better
generic security reductions than previous efforts.

To demonstrate the usefulness of this new paradigm, we construct several
signcryption schemes based on signcryption tag-KEMs. The first is a simple mod-
ification of Zheng’s original signcryption scheme [17]. This scheme has become
baseline standard for judging the efficiency and security of any new signcryption
scheme or construction method. The second is a new signcryption scheme based
on the Chevallier-Mames signature scheme [8]. As far as the authors’ are aware,
this new signcryption scheme has the tightest known security bounds.

2 Preliminaries

2.1 Signcryption

The signcryption primitive was introduced in 1997 by Zheng [17].

Definition 1 (Signcryption). A signcryption scheme SC = (Com, KeyS ,
KeyR, SC , USC) is defined as tuple of five algorithms.

– A probabilistic common parameter generation algorithm, Com. It takes as
input a security parameter 1k, and returns all the global information I needed
by users of the scheme, such as choice of groups or hash functions.

– A probabilistic sender key generation algorithm, KeyS . It takes as input the
global information I, and outputs a private/public keypair (skS , pkS) that is
used to send signcrypted messages.

– A probabilistic receiver key generation algorithm, KeyR. It takes as input the
global information I, and outputs a private/public keypair (skR, pkR) that is
used to receive signcrypted messages.

– A probabilistic signcryption algorithm SC . It takes as input the private key
of the sender skS , the public key of the receiver pkR, and a message m. It
outputs a signcryptext σ.

– A deterministic unsigncryption algorithm USC. It takes as input the public
key of the sender pkS , the private key of the receiver skR, and a signcryptext
σ. It outputs either a message m or the unique error symbol ⊥.

For a signcryption scheme to be sound, it is required that m = USC
(
pkS , skR,

SC (skS , pkR,m)
)

for (almost) all fixed keypairs (skS , pkS) and (skR, pkR).

For a signcryption scheme to be useful, it is necessary that it also satisfies well-
defined notions of security corresponding to the design goals of confidentiality
and authenticity/integrity. Formally, the probability of an adversary breaking
the security of signcryption should be negligible as a function of the security
parameter 1k.

Definition 2 (Negligible function). A function f : N→ R is negligible if for
every polynomial p over N, there exists a n0 ∈ N such that f(n) ≤ 1

p(n) for all
n ≥ n0.

Security models are commonly phrased in terms of games played between a hy-
pothetical challenger and an adversary, who are both modelled as probabilistic
Turing machines. In a game, the adversary is challenged to defeat a certain
well-defined aspect of the underlying scheme’s security under controlled circum-
stances. As long as the adversary’s advantage (with respect to random guessing)
at winning the game is negligible, the scheme may be considered to be secure.

The canonical notion of confidentiality for signcryption is that of indistin-
guishability of signcryptions. This is adapted directly from the corresponding
security notion for encryption schemes: an adversary should not, even when
given adaptive access to signcryption and unsigncryption oracles, be able to
distinguish between the signcryption of two messages of his own choice. Indis-
tinguishability of signcryptions with respect to an adaptive chosen ciphertext
adversary is commonly referred to as IND-CCA2. This security notion may be
expressed by a game played between the challenger and a two-stage adversary
A = (A1,A2). For a given security parameter 1k, the game proceeds as follows:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary runs A1 on the input (I, pkS , pkR). During its execution,
A1 is given access to signcryption and unsigncryption oracles. The sign-
cryption oracle takes a message m as input, and returns SC (skS , pkR,m).
The unsigncryption oracle takes a signcryptext σ as input, and returns
USC (pkS , skR, σ). A1 terminates by outputting two messages (m0,m1) of
equal length, and some state information state.

3. The challenger computes a challenge signcryption by generating a random
bit b ∈ {0, 1} and computing σ = SC (skS , pkR,mb).

4. The adversary runs A2 on the input (state, σ). During its execution, A2

has access to signcryption and unsigncryption oracles as above, with the
restriction that the challenge signcryptext σ may not be asked to the un-
signcryption oracle. A2 terminates by outputting a guess b′ for the value of
b.

The adversary wins the game whenever b = b′. The advantage of A is defined as∣∣Pr[b = b′]− 1/2
∣∣.

With regards to the authenticity and integrity of signcryption, the notion of
existential forgery (UF-CMA) is adapted from analysis of signature schemes. It

is however necessary to distinguish between different types of such forgery. In an
outsider-secure signcryption scheme, the adversary is given access to signcryp-
tion and unsigncryption oracles, and the public keys of the sender and receiver.
For the stronger notion of insider security, the unsigncryption oracle is replaced
by giving the adversary direct access to the receiver’s private key. This arti-
cle will focus on insider-secure signcryption only. Simple and efficient hybrid
signcryption schemes secure against outsiders are considered by Dent [13].

It is also necessary to specify what it means for the adversary to win the
security game. Traditionally, the requirement has been that the adversary should
output a message/signcryptext pair where the message has not been asked to
the signcryption oracle. This reflects the “business use” of a signature, where
an attacker’s ability to produce a new signature on a previously signed message
does not constitute a security risk. A stronger notion is that of strong existential
unforgeability (sUF-CMA). In this case, the only restriction is that the returned
signcryptext was not returned by the signcryption oracle when queried on the
submitted message. Given a security parameter 1k, a game for the sUF-CMA
insider security of a signcryption scheme procceds as follows:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary A is run on the input (I, pkS , skR, pkR). During its execution,
A is given access to a signcryption oracle, which takes a message m as input
and returns SC (skS , pkR,m). A terminates by outputting a message m and
a signcryptext σ.

The adversary wins the game if m = USC (pkS , skR, σ) and the signcryption
oracle never returned σ when queried on the message m. The advantage of A is
defined as Pr[A wins].

2.2 Tag-KEMs

In the traditional KEM-DEM framework for hybrid encryption, the KEM uses
public key methods to encrypt and transmit the symmetric key used by the
DEM. Formally, a KEM consists of an asymmetric key generation algorithm that
outputs a private/public key-pair, an encapsulation algorithm that encrypts a
random symmetric key using public-key techniques, and a decapsulation algo-
rithm that uses the corresponding private key to decrypt said symmetric key
from its encapsulation. This paradigm for building hybrid encryption schemes
was extended in early 2005, when Abe et.al. [1] showed that one might build more
efficient hybrid schemes by replacing the KEM with what they call a Tag-KEM.

Definition 3 (Tag-KEM). A Tag-KEM TKEM = (Gen, Sym, Encap, Decap)
is defined as a tuple of four algorithms:

– A probabilistic key generation algorithm, Gen. It takes as input a security
parameter 1k, and outputs a private key sk and a public key pk. The public
key contains all specific choices used by the scheme, such as choice of groups.

– A probabilistic symmetric key generation algorithm, Sym. It takes as input
a public key pk, and outputs a symmetric key K and some internal state
information ω.

– A probabilistic encapsulation algorithm, Encap. It takes as input the state
information ω together with an arbitrary string τ , which is called a tag, and
outputs an encapsulation E.

– A deterministic decapsulation algorithm, Decap. It takes a private key sk,
an encapsulation E and a tag τ as input, and outputs a symmetric key K.

For a Tag-KEM to be sound, the decapsulation algorithm Decap must output the
correct key K when run with a correctly formed encapsulation E of K, and the
corresponding private key and tag.

Tag-KEMs as such may be viewed as a generalisation of regular KEMs: if the
tag τ is a fixed string, the Sym and Encap algorithms together make up the
encapsulation algorithm of the traditional model.

Definition 4 (DEM). A data encapsulation mechanism DEM = (Enc, Dec)
is defined as a pair of algorithms:

– A symmetric encryption algorithm Enc, that takes a symmetric key K ∈ K
and a message m as input, and returns a ciphertext C = EncK(m). The set
K is called the keyspace of the DEM.

– A symmetric decryption algorithm Dec, that takes a symmetric key K ∈ K
and a ciphertext c as input, and returns a message m = DecK(C).

For soundness, the encryption and decryption algorithms should be each other’s
inverses under a fixed key K. Notationally, m = DecK

(
EncK(m)

)
.

For the purposes of this paper, it is only required that DEMs are secure with
respect to indistinguishability against passive attackers (IND-PA). Formally, this
security notion is captured by the following game, played between a challenger
and a two-stage adversary A = (A1,A2):

1. The challenger generates a random symmetric K ∈ K.
2. The adversary runs A1 with the security parameter 1k as input. A1 termi-

nates by outputting two equal length messages m0 and m1, as well as some
state information state.

3. The challenger generates a random bit b ∈ {0, 1} and computes the challenge
ciphertext C = EncK(mb).

4. The adversary runs A2 on the input (state, C). A2 terminates by returning
a guess b′ for the value of b.

The adversary wins the game whenever b = b′. The advantage of A is defined as∣∣Pr[b = b′]− 1/2
∣∣.

A Tag-KEM may be combined with a DEM to form a hybrid encryption
scheme in a similar way as a regular KEM. However, in [1] this is done in a novel

Encr(pk , m):

(K, ω)
R← TKEM.Sym(pk).

C ← DEM.EncK(m).

E
R← TKEM.Encap(ω, C).

σ ← (E, C).
Return σ.

Decr(sk , σ):
(E, C) ← σ.
K ← TKEM.Decap(sk , E, C).
m ← DEM.DecK(C).
Return m.

Key(1k):

(sk , pk)
R← TKEM.Key(1k).

Return (sk , pk).

Fig. 1: Construction of asymmetric encryption scheme from Tag-KEM and
DEM.

manner, by using the ciphertext output by the DEM as the tag. The explicit
construction is shown in Figure 1.

The main result of Abe et.al. [1] is that the construction of Figure 1 is
IND-CCA2 secure, provided that the DEM is secure against passive attackers
(IND-PA), and it is not possible for an adversary, given a pair (E,K), to deter-
mine whether K is the key encapsulated by E, or a random key of the correct
length. This contrasts with the traditional KEM-DEM construction, in which the
DEM is required to be secure against an active attack for the resulting hybrid
encryption scheme to be IND-CCA2.

3 Signcryption Tag-KEMs

3.1 Basic Definition

We define a Signcryption Tag-KEM (SCTK) by direct analogy to the previous
definition of Tag-KEMs for encryption.

Definition 5 (Signcryption Tag-KEM). A signcryption tag-KEM SCTK =
(Com, KeyS , KeyR, Sym, Encap, Decap) is defined as a tuple of six algorithms.

– A probabilistic common parameter generation algorithm, Com. It takes as
input a security parameter 1k, and returns all the global information I needed
by users of the scheme, such as choice of groups or hash functions.

– A probabilistic sender key generation algorithm, KeyS . It takes as input the
global information I, and outputs a private/public keypair (skS , pkS) that is
used to send signcrypted messages.

– A probabilistic receiver key generation algorithm, KeyR. It takes as input the
global information I, and outputs a private/public keypair (skR, pkR) that is
used to receive signcrypted messages.

– A probabilistic symmetric key generation algorithm, Sym. It takes as input
the private key of the sender skS and the public key of the receiver pkR, and
outputs a symmetric key K together with internal state information ω.

– A probabilistic1 key encapsulation algorithm, Encap. It takes as input the
state information ω and an arbitrary tag τ , and returns an encapsulation E.

– A deterministic decapsulation/verification algorithm, Decap. It takes as in-
put the sender’s public key pkS , the receiver’s private key skR, an encapsu-
lation E and a tag τ . The algorithm returns either a symmetric key K or
the unique error symbol ⊥.

For the SCTK to be sound, the decapsulation/verification algorithm must return
the correct key K whenever the encapsulation E is correctly formed and the
corresponding keys and tag are supplied.

The basic idea behind a signcryption tag-KEM is that the key encapsulation
algorithm provides what amounts to a signature on the tag τ . Signcryption tag-
KEMs may thus be combined with regular DEMs to form a hybrid signcryption
scheme as shown in Figure 2, using the SCTK to provide a signature on the
symmetric ciphertext c and encapsulate the symmetric key K.

Com(1k):

I
R← Com(1k).

Return I.

KeyS (I):

(skS , pkS)
R← KeyS (I).

Return (skS , pkS).

KeyR(I):

(skR, pkR)
R← KeyR(I).

Return (skR, pkR).

SC (skS , pkR, m):

(K, ω)
R← Sym(skS , pkR).

C ← EncK(m).

E
R← Encap(ω, C).

σ ← (E, C).
Return σ.

USC (pkS , skR, σ):
(E, C) ← σ.
If ⊥ ← Decap(pkS , skR, E, C):
Return ⊥ and terminate.
Else K ← Decap(pkS , skR, E, C).
m ← DecK(C).
Return m.

Fig. 2: Construction of hybrid signcryption scheme from SCTK and DEM.

Previous discussion of hybrid signcryption schemes have discussed efficient
hybrid signcryption as a variant of the “Encrypt-and-Sign” [2] paradigm. A
straightforward approach is to encrypt the message to be sent with a symmetric
cipher, while combining the features of key encapsulation and digital signatures
into one efficient operation [11, 12, 5]. Using signcryption tag-KEMs in the con-

1 Theoretically, this algorithm can always be represented as a deterministic algorithm,
which takes an appropriately sized random string as input. This random string is
generated by the probabilistic algorithm Sym and passed to Encap as part of ω.
However, if the probabilistic version of the encapsulation algorithm Encap is only
expected-polynomial-time, then the deterministic version will have an (arbitrarily
small) possibility of failing.

struction yields something more akin to a “Encrypt-then-Sign” based scheme,
since the signature is made on the ciphertext “tag”.

Another feature of the signcryption tag-KEM construction is that it auto-
matically supports the sending of associated cleartext data with a message. In
particular, one may submit a tag τ = (C, l) to the encapsulation algorithm, con-
sisting of the ciphertext C as well as a label l containing any associated data
that is to be bound to C by the encapsulation. Because the encapsulation acts
as a signature on the input tag, the authenticity and integrity of both ciphertext
and associated data is provided. The only requirement for doing this is that the
tag τ must be formatted in such a way that (C, l) ← τ may be parsed in a
deterministic and unambiguous manner. A standard application of this feature
is the common practice of “binding” the sender’s and receiver’s public key to
any signcryption sent between them. Many signcryption schemes explicitly do
this, in order to provide some degree of multi-user security.

3.2 Security Models

For a signcryption tag-KEM to be considered secure, it must fulfill well-defined
security notions with respect to confidentiality and authenticity/integrity. The
Tag-KEM confidentiality model used in [1] may easily adapted to the signcryp-
tion setting, and the notion of strong existential unforgeability is adapted to
provide authenticity/integrity.

In the IND-CCA2 game for a Signcryption Tag-KEM, the adversary attempts
to distinguish whether a given symmetric key is the one embedded in an encap-
sulation. The adversary A = (A1,A2,A3) runs in three stages, with each stage
having access to oracles that fascilitate both adaptive encapsulation and decap-
sulation queries. For a given security parameter 1k, this may be expressed by
the following game:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary runs A1 on the input (I, pkS , pkR). Durings its execution, A1

is given access to three oracles, corresponding to each of the algorithms Sym,
Encap and Decap:
– The symmetric key generation oracle does not take any input, and runs

(K, ω) = Sym(skS , pkR). It then stores the value ω (hidden from the
view of the adversary, and overwriting any previously stored values),
and returns the symmetric key K.

– The key encapsulation oracle takes an arbitrary tag τ as input, and
checks whether there exists a stored value ω. If there is not, it returns ⊥
and terminates. Otherwise it erases the value from storage, and returns
Encap(ω, τ).

– The decapsulation/verification oracle takes an encapsulation E and a
tag τ as input, and returns Decap(pkS , skR, E, τ).

A1 terminates by returning state information state1 .

3. The challenger computes (K0, ω) = Sym(skS , pkR), generates a random sym-
metric key K1 ∈ K, and a random bit b ∈ {0, 1}.

4. The adversary runs A2 on the input (state1 ,Kb). During its execution, A2

may access the same oracles as previously. A2 terminates by returning state
information state2 and a tag τ .

5. The challenger computes a challenge encapsulation E = Encap(ω, τ).
6. The adversary runs A3 on the input (state2 , E). During its execution, A3

may access the same oracles as previously, with the restriction that (E, τ)
may not be asked to the decapsulation oracle. A3 terminates by returning a
guess b′ for the value of b.

The adversary wins the game whenever b = b′. The advantage of A is defined
as

∣∣Pr[b = b′] − 1/2
∣∣. A signcryption tag-KEM is said to be IND-CCA2 secure

if, for any adversary A, the advantage of A in the IND-CCA2 game is negligible
with respect to the security parameter 1k.

It is important to notice the interaction between the symmetric key genera-
tion and encapsulation oracles. This is done to allow the adversary to perform
completely adaptive encapsulations, without having access to the internal infor-
mation stored in ω. The IND-CCA2 game ensures that a SCTK fulfills several
necessary properties with regards to malleability and information hiding, and
replaces the notions of IND-CCA2 and INP-CCA2 used by Dent [11, 12] for
regular signcryption KEMs.

With respect to authenticity and integrity, an adversary should not be able
to find encapsulation/tag-pairs (E, τ) such that Decap(pkS , skR, E, τ) 6= ⊥, ex-
cept by the way of oracles. Since the encapsulation algorithm should provide a
signature on the tag τ , this is closely tied to forging the underlying signature
scheme. An attack game corresponding to the sUF-CMA security of a SCTK
may thus be specified as follows:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary A is run on the input (I, pkS , skR, pkR). During its execution,
A may access the symmetric key generation and encapsulation oracles as
were defined in the previous game. A terminates by returning an encapsula-
tion E and a tag τ .

The adversary wins the game if ⊥ 6= Decap(pkS , skR, E, τ) and the encapsula-
tion oracle never returned E when queried on the tag τ . The advantage of A is
defined as Pr[A wins]. A signcryption tag-KEM is said to be sUF-CMA secure
if, for any adversary A, the advantage of A in the sUF-CMA game is negligible
with respect to the security parameter 1k.

Definition 6 (Secure signcryption tag-KEM). A signcryption tag-KEM
SCTK is said to be secure if it is IND-CCA2 and sUF-CMA secure.

3.3 Generic Security of Hybrid Signcryption

If the SCTK+DEM construction is to be of any use, the resulting signcryption
scheme must be provably secure.

Theorem 1. Let SC be a hybrid signcryption scheme constructed from a sign-
cryption tag-KEM and a DEM. If the signcryption tag-KEM is IND-CCA2 se-
cure and the DEM is IND-PA secure, then SC is IND-CCA2 secure.

Proof. Let Game 0 be the regular IND-CCA2 game for signcryption, as specified
in Section 2.1. In the following game, the hybrid signcryption procedure is altered
to use a random key when generating the challenge signcryptext, rather than
the real key output by Sym. We refer to the resulting game as Game 1:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary runs A1 on the input (I, pkS , pkR). During its execution,
A1 has access to signcryption and unsigncryption oracles. The signcryption
oracle takes a message m as input, and returns SC (skS , pkR,m). The unsign-
cryption oracle takes a signcryptext σ as input, and returns USC (pkS , skR, σ).
A1 terminates by outputting two messages (m0,m1) and some state infor-
mation state.

3. The challenger computes (K, ω) = Sym(skS , pkR), and generates a random
key K ′ ∈ K, as well as a random bit b ∈ {0, 1}. He then computes C =
EncK′(mb) and E = Encap(ω, C), and sets σ = (E, C).

4. The adversary runs A2 on the input (state, σ). During its execution, A2 may
access signcryption and unsigncryption oracles as above, with the restriction
that σ may not be asked to the unsigncryption oracle. A2 terminates by
outputting a guess b′ for the bit b.

Let X0 and X1 be the events that b = b′ in Game 0 and Game 1, respectively.
We will show that

∣∣Pr[X1]− Pr[X0]
∣∣ ≤ 2εSCTK . Here, εSCTK is the advantage

of a particular distinguisher algorithm D at attacking the IND-CCA2 security
of the SCTK.

Figure 3 gives a complete specification of the algorithm D. It plays the IND-
CCA2 game against SCTK, using A as a subroutine. Oracle queries made by
A are simulated by D. It uses the subroutines OSC to simulate signcryption
oracle queries, and OUSC to simulate unsigncryption queries. The symmetric
key generation, encapsulation and decapsulation/verification oracles accessible
by D are referred to as OS , OE and OD, respectively. We denote the execution
of an algorithm A that takes input values α, . . . and has access to oracles O, . . .
as A(α, . . . ;O, . . .).

In Figure 3, the challenge encapsulation/tag (E, C) is only asked to the
decapsulation oracle by D if the challenge ciphertext σ is asked to the unsign-
cryption oracle by A. Note that D2 receives either the real key encapsulated by
E or a random key from the challenger. If D2 receives the real key, then b′ is
the output A would produce when playing Game 0. Similarly, if D2 receives a

D1(I, pkS , pkR;OS ,OE ,OD):

(m0, m1, s)
R← A1(I, pkS , pkR;OSC ,OUSC).

state1 ← (m0, m1, s).
Return state1 .

D2(state1 , K;OS ,OE ,OD):

b
R← {0, 1}.

C ← EncK(mb).
state2 ← (state1 , b, C).
Return (state2 , C).

D3(state2 , E;OS ,OE ,OD):
(m0, m1, s, b, C) ← state2 . σ ← (E, C).

b′
R← A2(s, σ;OSC ,OUSC).

If b = b′: Return 1.
Else: Return 0.

OSC(m):

K
R← OS .

C ← EncK(m).

E
R← OE(C).

σ ← (E, C).
Return σ.

OUSC(σ):
(E, C) ← σ.
If ⊥ ← OD(E, C):
Return ⊥ and terminate.
Else K ← OD(E, C).
m ← DecK(C).
Return m.

Fig. 3: Distinguisher algorithm D.

random key, then b′ is the output A would produce when playing Game 1. The
following derivation is well known:

∣∣Pr[D wins]− 1
2

∣∣ =
1
2

∣∣Pr[D outputs 1|D received real key K]

− Pr[D outputs 1|D received random key K]
∣∣

=
1
2

∣∣Pr[b = b′|D received real key K]

− Pr[b = b′|D received random key K]
∣∣

=
1
2

∣∣Pr[X1]− Pr[X0]
∣∣.

Hence, the difference in A’s advantage between Game 0 and Game 1 is bounded
by twice that of an adversary against the IND-CCA2 security of SCTK.

We proceed to show that the advantage of A in Game 1 is bounded by that
of a passive attacker against the DEM. Figure 4 specifies an adversary B against
the IND-PA security of the DEM, that uses A as a subroutine. In the game
described in Figure 4, B simulates the environment of A in Game 1 perfectly.
Furthermore, B wins every time A would have won Game 1. Hence, they have
the same advantage. It follows that

εSC ≤ 2εSCTK + εDEM , (1)

where εSC , εSCTK and εDEM are the advantages of adversaries against IND-
CCA2 security of the hybrid signcryption scheme, the IND-CCA2 security of
the signcryption tag-KEM and the IND-PA security of the DEM, respectively.

ut

B1:

I
R← Com(1k).

(skS , pkS)
R← KeyS (I).

(skR, pkR)
R← KeyR(I).

(m0, m1, s)
R← A1(I, pkS , pkR;OSC ,OUSC).

state ← (I, skS , pkS , skR, pkR, m0, m1, s).
Return (m0, m1, state

′).

B2(state, C):
(I, skS , pkS , skR, pkR, m0, m1, s) ← state.

(K, ω)
R← Sym(skS , pkR).

E
R← Encap(ω, C).

σ ← (C, E).

b
R← A2(s, σ;OSC ,OUSC).

Return b.

OSC(m):

(K, ω)
R← Sym(skS , pkR).

C ← EncK(m).

E
R← Encap(ω, C).

σ ← (E, C).
Return σ.

OUSC(σ):
(E, C) ← σ.
If ⊥ ← Decap(pkS , skR, E, C):
Return ⊥ and terminate.
Else K ← Decap(pkS , skR, E, C).
m ← DecK(C).
Return m.

Fig. 4: IND-PA adversary against the DEM.

Remark 1. This reduction is significantly tighter than those found for regular
hybrid signcryption in [11, 5].

Theorem 2. Let SC be a hybrid signcryption scheme constructed from a sign-
cryption tag-KEM and a DEM. If the signcryption tag-KEM is sUF-CMA secure,
then SC is also sUF-CMA secure.

Proof. Since every valid forgery of SC implies a valid encapsulation, it is reason-
ably straightforward to show that forgery of SC implies forgery of the underlying
SCTK. Figure 5 specifies an adversary B, which uses a black-box adversary A
against the UF-CMA security of SC to win the corresponding sUF-CMA game
against SCTK. In the above scenario, A wins the forgery game against SC when-

B(I, pkS , skR, pkR;OS ,OE):

(m, σ)
R← A(I, pkS , skR, pkR;OSC).

(E, C) ← σ.
Return (E, C).

OSC(m):

K
R← OS .

C ← EncK(m).

E
R← OE(C).

σ ← (E, C).
Return σ.

Fig. 5: Construction of a sUF-CMA adversary against SCTK.

ever the returned σ unsigncrypts to m and m has not been queried to the sign-
cryption oracle OSC . If this is the case, then B wins the sUF-CMA game against
SCTK.

To see this, note that B wins whenever it returns a pair (E,C) that does not
decapsulate to ⊥ and such that E was never a response from OE to a query C.

Since σ is a valid ciphertext, the former condition is always fulfilled. Furthermore,
one may note that the ciphertext σ is associated deterministically to m through
the decapsulation algorithm. Hence, σ has been returned by OSC if and only if
m was ever queried. This implies that (E, C) was a query/response pair from
OSC if and only if (m,σ) was a query/response pair from OE . Hence, B wins
every time A does.

It follows that
εSC ≤ εSCTK , (2)

where εSC is the advantage of the UF-CMA adversary against SC, and εSCTK

is the advantage of the resulting sUF-CMA adversary against SCTK. ut

4 Sample schemes

4.1 Zheng Signcryption Revisited

Zheng’s original signcryption scheme [17] has become somewhat of a canonical
reference when hybrid signcryption is discussed [11, 5]. It is therefore natural to
see if it can be adapted to fit the new generic framework as well. Since Zheng’s
original scheme essentially uses the KEM to sign message plaintext, a slight
modification is required. Combining this with a DEM as per Figure 2 yields

Com(1k):
Pick a k-bit prime p.
Pick a large prime q that divides p− 1.
Pick g ∈ Z∗q of order q.
Pick cryptographic hash functions:
G : {0, 1}∗ → K.
H : {0, 1}∗ → Z/qZ.
I ← (p, q, g,G,H).
Return I.

KeyS (I):

skS
R← Z/qZ.

pkS ← gskS mod p.
Return (skS , pkS).

KeyR(I):

skR
R← Z/qZ.

pkR ← gskR mod p.
Return (skR, pkR).

Sym(skS , pkR):

n
R← Z/qZ.

κ ← pkR
n mod p.

bind ← pkS ||pkR.
K ← G(κ).
ω ← (skS , n, κ, bind).
Return (K, ω).

Encap(ω, τ):
(skS , n, κ, bind) ← ω.
r ← H(τ ||bind ||κ).
s ← n/(skS + r) mod q.
E ← (r, s).
Return E.

Decap(pkS , skR, E, τ):
(r, s) ← E.
κ ← (pkS · gr)s·skR mod p.
r′ ← H(τ ||bind ||κ).
If r 6= r′:
Return ⊥ and terminate.
Else K ← G(κ).
Return K.

Fig. 6: Zheng-SCTK.

Zheng’s original scheme, with the sole modification that the tag τ used by Encap
is the ciphertext C ← EncK(m), rather than m itself. It is well-established that
both Zheng’s signcryption scheme and the derived signcryption KEM are secure
[3, 11, 5], and it is therefore not surprising that the above SCTK is secure as well.

Theorem 3. Zheng-SCTK, as specified in Figure 6, is a secure signcryption
tag-KEM.

The proofs follow those of [3, 5], and are reproduced in full in Appendix A.

Remark 2. The security bounds for Zheng’s signcryption scheme in this frame-
work is comparable to that of the original scheme-specific reduction [3]. This was
not the case in generic models for hybrid signcryption [11, 5] based on regular
KEMs.

It also appears likely that the hybrid signcryption scheme of Malone-Lee [15]
may also be adapted to the signcryption tag-KEM paradigm, along with its
corresponding proof of security.

4.2 The CM signcryption tag-KEM

As discussed in [17, 5], the Zheng signcryption scheme is constructed by modify-
ing an existing signature scheme. By making the randomiser κ computed during
signature verification dependent on the receiver’s key skS , an efficient signcryp-
tion scheme is constructed at a very low additional cost. This trick may be
applied to other signature schemes as well. In this section, we propose a new
signcryption tag-KEM, built from a recent signature scheme due to Chevallier-
Mames [8]. The resulting construction has tight security reductions with respect
to the Computational Diffie-Hellman and Gap Diffie-Hellman problems. This is
of practical interest, since previous hybrid signcryption schemes have had rela-
tively loose security reductions with respect to unforgeability. Figure 7 gives a
complete specification of the CM signcryption tag-KEM.

Theorem 4. The CM signcryption tag-KEM specified in Figure 7 is a secure
signcryption tag-KEM.

A full proof is given in Appendix B. The proof uses techniques that are directly
analogous to those used in the security proofs for Zheng’s scheme [3, 5]. However,
this scheme has a better security reduction for authenticity/integrity, since the
security of the underlying signature scheme does not rely on a “forking lemma”
argument [16]. To the authors’ knowledge, this construction gives us the tightest
known security reductions for a signcryption scheme.

4.3 Signcryption schemes with associated data

Given a secure signcryption scheme with support for associated plaintext data,
there exists a general construction of a secure signcryption tag-KEM. This is
useful whenever the original signcryption scheme carries restrictions on the

Com(1k):
Pick a large prime q.
Let G be a cyclic group of order q, such
that the representation of the elements of
G is included in {0, 1}k.
Pick a generator g of G.
Pick cryptographic hash functions:
G : G → G.
H : {0, 1}∗ ×G6 → Zq.
KDF : G → K.
I ← (q, G, g,G,H, KDF).
Return I.

KeyS (I):

skS
R← Zq.

pkS ← gskS .
Return (skS , pkS).

KeyR(I):

skR
R← Zq.

pkR ← gskR . Return (skR, pkR).

Sym(skS , pkR):

n
R← Zq.

u ← pkR
n.

K ← KDF (u).
ω ← (skS , pkR, n, u).
Return (K, ω).

Encap(ω, τ):
(skS , pkR, n, u) ← ω.
h ← H(u).
z ← hskS .
v ← hn.
c ← G(τ ||pkR, pkS , g, z, h, u, v).
s ← n + c · skS , mod q.
E ← (z, c, s).

Decap(pkS , skR, E, τ):
u ← (gs · pkS

−c)skR .
h ← H(u).
v ← hs · z−c.
If c 6= G(τ ||pkR, pkS , g, z, h, u, v) :
Return ⊥.
Else K ← KDF (u).
Return K.

Fig. 7: The CM signcryption tag-KEM

size of its message space. The implied signcryption scheme (constructed from
SCTK+DEM) is identical to the construction given previously by Dodis et.al.
[14][Theorem 4].

Let SC be a signcryption scheme with support for associated data, i.e. where
the signcryption and unsigncryption algorithms take input of the form m∗ =
(m, l) and σ∗ = (σ, l) respectively, and can parse these strings deterministi-
cally and unambigiously2. The resulting signcryption tag-KEM uses the com-
mon parameter and private/public key generation algorithms specified by SC,
and constructs algorithms for symmetric key generation, encapsulation and de-
capsulation as shown in Figure 8.

Sym(skS , pkR):

K
R← K.

ω ← (skS , pkR, K).
Return (ω, K).

Encap(ω, τ):
(skS , pkR, K) ← ω.
Return SC

(
skS , pkR, (K, τ)

)
.

Decap(pkS , skR, E, τ):
Return USC

(
pkS , skR, (E, τ)

)
.

Fig. 8: Constructing a SCTK from a signcryption scheme with associated data.

Theorem 5. The signcryption tag-KEM specified in Figure 8 is as secure as
the underlying signcryption scheme SC.
This result is established through the explicit construction of algorithms that use
adversaries against the derived signcryption tag-KEM to attack the underlying
signcryption scheme. Intuitively, a successful IND-CCA2 adversary against the
signcryption tag-KEM must distinguish between two random keys signcrypted
by SC, whereas a successful sUF-CMA adversary against the signcryption tag-
KEM must create a sUF-CMA forgery of SC. A full proof is given in Appendix
C.

5 Building Better Key Agreement Mechanisms with
Signcryption Tag-KEMs

The idea that signcryption KEMs can be used as key agreement mechanisms
was first investigated by Dent [13]. Dent notes that whilst an encryption KEM
provides a basic mechanism for agreeing a symmetric key between two parties,
it does not provide any form of authentication or freshness guarantee. Moreover,
he notes that signcryption KEMs (with outsider security) can be used to agree
a symmetric key with authentication. A simple protocol key agreement protocol
is then proposed, wherein freshness is guaranteed by the computing the MAC of
2 The security notions for confidentiality and authenticity/integrity are modified ac-

cordingly.

a timestamp or nonce using the newly agreed symmetric key. However, as the
paper remarks, this protocol is susceptible to a known key attack and should
not be used in practice.

In this section we propose that signcryption tag-KEMs can be used as prac-
tical key agreement mechanisms, with the SCTK providing both the authenti-
cation and freshness components of the protocol in a simple way. Consider the
following protocol which allows Alice and Bob to agree a key for a session with
an ID SID between them:

1. Alice generates a random nonce rA of an agreed length, and sends rA to
Bob.

2. Bob computes (K, ω) = Sym(skBob , pkAlice) and E = Encap(ω, τ) using the
(unique) tag τ = rA||SID . Bob accepts K as the shared secret key, and sends
C to Alice.

3. Alice computes K = Decap(pkBob , skAlice , E, τ) using the tag τ = rA||SID ,
and accepts K as the shared key providing K 6= ⊥.

We argue that this protocol has the following attributes:

– Implicit key authentication to both parties. If both parties obtain
the other’s correct public key, then no attacker can distinguish between a
session’s correct public key and a randomly generated key without breaking
the confidentiality criterion for the SCTK.

– Resistance to known key attacks. It is easy to see that an attacker
that gains a key from any earlier protocol execution (or, indeed, in a later
protocol execution) between Alice and Bob gains no advantage in breaking
the scheme. This is because this “session corruption” is equivalent to making
a signcryption oracle query with a random tag. Since the SCTK remains
secure in this situation, so does the key agreement protocol.

– Key confirmation from Bob to Alice. Since no party (including Alice)
can forge a signcryptext that purports to come from Bob, if Alice recovers
a key K from C, then that key K must have been produced by Bob in the
correct way. Therefore, Alice can have confidence that Bob knows the correct
key. However, an extra round of interaction will be required if Alice wishes
to give Bob key confirmation.

Unfortunately, we cannot provide a formal proof of the security of this protocol
in any of the standard models [4, 6, 7]. This is not due to any property of this
protocol, and a proof of security in the Bellare-Rogaway model [4, 6] intuitively
seems fairly simple, but because such a proof requires the use of an SCTK that
is secure in a multi-party model.

As has been noted previously [12], no adequate multi-party security model
has been established for signcryption schemes. This is a necessary precursor to
a proof of security for the above protocol. Nevertheless, we suggest that the
key agreement protocol derived from any SCTK given in Section 4 are secure,
efficient and useable.

6 Conclusions

We have shown that there is a natural extension of the concept of a Tag-KEM to
the signcryption setting and proven that secure signcryption Tag-KEMs can be
combined with passively secure DEMs to provide signcryption schemes with full
insider security. This vastly simplifies and improves upon the KEM-DEM model
insider secure signcryption schemes proposed by Dent [12]. To show that this
construction is viable, we have given several examples of signcryption Tag-KEMs,
including a brand new construction based on the Chevallier-Mames signature
scheme.

Acknowledgements

Alex Dent gratefully acknowledges the financial support of the EPSRC.

References

1. Asayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor Shoup. Tag-
KEM/DEM: A new framework for hybrid encryption and a new analysis of
Kurosawa-Desmedt KEM. In Advances in Cryptology – EUROCRYPT 2005, vol-
ume 3494 of Lecture Notes in Computer Science, pages 128–146. Springer–Verlag,
2005.

2. Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature
and encryption. In Advances in Cryptology – EUROCRYPT 2002, volume 2332 of
Lecture Notes in Computer Science, pages 83–107. Springer–Verlag, 2002.

3. Joonsang Baek, Ron Steinfeld, and Yuliang Zheng. Formal proofs for the security
of signcryption. In Proceedings of PKC 2002, volume 2274 of Lecture Notes in
Computer Science, pages 80–98. Springer–Verlag, 2002.

4. M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R.
Stinson, editor, Advances in Cryptology – Crypto ’93, volume 773 of Lecture Notes
in Computer Science, pages 232–249. Springer-Verlag, 1993.

5. Tor E. Bjørstad. Provable security of signcryption. Master’s
thesis, Norwegian University of Technology and Science, 2005.
http://www.nwo.no/˜tor/pdf/msc thesis.pdf.

6. S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their
security analysis. In M. Darnell, editor, Cryptography and Coding, volume 1355 of
Lecture Notes in Computer Science, pages 30–45. Springer-Verlag, 1997.

7. R. Canetti and H. Krawcyzk. Universally composable notions of key exchange and
secure channels. In L. Knudsen, editor, Advances in Cryptology – EUROCRYPT
2002, volume 2332 of Lecture Notes in Computer Science, pages 337–351. Springer-
Verlag, 2002.

8. Benôıt Chevallier-Mames. An efficient CDH-based signature scheme with a tight
security reduction. In Advances in Cryptology – CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 511–526. Springer–Verlag, 2005.

9. Benôıt Chevallier-Mames. Personal correspondence, 2005.
10. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-

cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2004.

11. Alexander W. Dent. Hybrid cryptography. Cryptology ePrint Archive, Report
2004/210, 2004. http://eprint.iacr.org/2004/210/.

12. Alexander W. Dent. Hybrid signcryption schemes with insider security. In Pro-
ceedings of ACISP 2005, volume 3574 of Lecture Notes in Computer Science, pages
253–266. Springer–Verlag, 2005.

13. Alexander W. Dent. Hybrid signcryption schemes with outsider security. In Pro-
ceedings of ISC 2005, volume 3650 of Lecture Notes in Computer Science, pages
203–217. Springer–Verlag, 2005.

14. Yevgeniy Dodis, Michael J. Freedman, Stanislaw Jarecki, and Shabsi Walfish. Op-
timal signcryption from any trapdoor permutation. Cryptology ePrint Archive,
Report 2004/020, 2004. http://eprint.iacr.org/2004/020/.

15. John Malone-Lee. Signcryption with non-interactive non-repudiation. Techni-
cal Report CSTR-02-004, Department of Computer Science, University of Bristol,
2004. http://www.cs.bris.ac.uk/Publications/Papers/1000628.pdf.

16. David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ad-
vances in Cryptology - EUROCRYPT ’96, volume 1070, pages 387–398. Springer–
Verlag, 1996.

17. Yuliang Zheng. Digital signcryption or how to achieve cost (signature
& encryption) << cost (signature) + cost (encryption). In Advances
in Cryptology – CRYPTO ’97, volume 1294 of Lecture Notes in Com-
puter Science, pages 165–179. Springer–Verlag, 1997. Unpublished full ver-
sion (47 pages), dated 1999, available through the author’s home page
http://www.sis.uncc.edu/˜yzheng/papers/signcrypt.pdf.

A Proof of Theorem 3

Zheng’s signcryption tag-KEM is a direct adaptation of the original signcryption
scheme, which is known to be secure [17, 3]. Proving the SCTK secure is little
more than applying the previous proof techniques in the new setting.

A.1 sUF-CMA security of Zheng-SCTK

The signature scheme underlying Zheng’s signcryption scheme is known as SDSS1
[17]. Our proof of security for Zheng-SCTK is in form of reduction to existential
forgery of SDSS1-signatures, which may be shown to be sUF-CMA secure with
respect to the discrete logarithm problem using “standard” reduction techniques
[16]. A concrete description of the scheme is given in Figure 9. A sUF-CMA forger
of the SDSS1 scheme thus needs to obtain (m, κ, r, s) such that the cyclical re-
lation

s ← n/(x + r) mod q

κ ← (y · gr)s mod p (3)
r ← H(m||κ)

holds for the specified public (and the corresponding private) key. Figure 10
gives a concrete specification of a forger F that accomplishes this by using a
successful sUF-CMA adversary A against Zheng-SCTK to obtain said relation.

Key(1k):
Pick a k-bit prime p.
Pick a large prime q that divides p− 1.
Pick g ∈ Z∗q of order q.
Pick a cryptographic hash function H :
{0, 1}∗ → Z/qZ.

x
R← Z/qZ.

y ← gx mod p.
sk ← (p, q, g,H, x, y).
pk ← (p, q, g,H, y).
Return (sk , pk).

Sign(sk , m):

n
R← Z/qZ.

κ ← gn mod p.
r ← H(m||κ).
s ← n/(x + r) mod q.
σ ← (r, s).
Return σ.

Ver(pk , m, σ):
κ ← (y · gr)s mod p.
r′ ← H(m||κ).
If r = r′, return >.
Else return ⊥.

Fig. 9: The SDSS1 signature scheme.

During the simulation, the forger may access to a signature oracle OSign that
produces valid signatures σ on arbitrary messages m, as well as a random oracle
OH representing the cryptographic hash function H. These are used to simulate
the symmetric key generation and encapsulation oracles used by A. F also runs
rigged versions of the random oracles G and H. From the way the cryptographic
hash function H is simulated by Hsim, the SCTK-adversary A outputs pairs
(E, τ) that are precisely of the form desired by the forger F . With regards to
the strong unforgeability criterion, note that A only wins the sUF-CMA game
against SCTK if OE never returned the encapsulation E when queried on the
tag τ . However, since the encapsulation oracle is created by running OSign on τ
and only modifying the behaviour of the random oracles, this implies that OSign

never returned (r, s) as a signature on τ either. To show that Zheng-SCTK is
sUF-CMA secure with respect to the sUF-CMA security of SDSS1 signatures,
it is hence only necessary to bound the probability of simulation failure.

The initial input values given to A are clearly of the correct form and distri-
bution, since pkS and I are derived from the SDSS1 public key pk , while skR and
pkR are output by KeyR as usual. Furthermore, the symmetric key generation
oracle OS and encapsulation oracles OE returns values that have the correct dis-
tributions (thanks to OSign) and are consistent with subsequent queries to the
random oracle simulators. Looking at Figure 10, one may note that the encapsu-
lation oracle returns the same E = (r, s) as that which was returned by OSign,
while computing the “correct” value of κ by computing κSDSS1 and comput-
ing κskR

SDSS1 mod p. The logical counterpart to this operation occurs when Hsim

performs a reverse exponentiation by 1
skR

before querying OH . With this detail
out of the way, the lazy evaluation performed by Gsim and Hsim is perfectly
legitimate, and produces consistent results.

The only possible cause of error in F ’s simulation hence occurs if OE causes
an inconsistency when modifying either of the I/O lists. This must happen since
the values of κ,K and r are being forced by OS and OSign, whereas previous
queries to Gsim and Hsim may already have assigned them.

F(pk ;OSign,OH):
Form I and pkS from pk .

(skR, pkR)
R← KeyR(I).

bind ← pkS ||pkR.

(E, τ)
R← A(I, pkS , skR, pkR;OS ,OE ,Gsim,Hsim).

Return the signature E = (r, s) on the message τ ||bind .

OS :

K
R← K.

Store K, overwriting any previous value.
Return K.

OE(τ):
If no stored K exists, return ⊥.
Else read K and erase it from storage.

(r, s)
R← OSign(τ ||bind).

κSDSS1 ← (pkS · gr)s mod p.
κ ← κskR

SDSS1 mod p.
Add (κ, K) to the I/O list of Gsim.
Add (τ ||bind ||κ, r) to the I/O list of Hsim.
Return (r, s).

Gsim(κ):
If (κ, K) is in the I/O list of Gsim:
Return K and terminate.
K

R← K.
Add (κ, K) to the I/O list of Gsim.
Return K.

Hsim(τ ||bind ||κ):
If (τ ||bind ||κ, r) is in the I/O list of Hsim:
Return r and terminate.
κSDSS1 ← κ

1
skR mod p.

r ← OH(τ ||bind ||κSDSS1).
Add (τ ||bind ||κ, r) to the I/O list of Hsim.
Return r.

Fig. 10: Forgery algorithm F .

An absolute worst case scenario occurs when A asks qG different values of
κ to Gsim, followed by qH queries of (τ ||bind ||·) to Hsim with qH new values of
κ different from each other as well as the first. In this case, (qG + qH) values
of κ will be reserved by at least one oracle simulator. Each subsequent query
to OE will have to miss these reserved values, and will fix a new value of κ as
well. The probability of the i’th query creating an inconsistency is hence at most
qG+qH+(i−1)

q . Summing over qE such queries yields a total failure probability of
at most

qE(2qG + 2qH + qE − 1)
2q

. (4)

This probability is negligible in q, and the advantage of F at forging SDSS1
signatures is hence negligibly close to that of A at forging Zheng-SCTK. ut

A.2 IND-CCA2 security of Zheng-SCTK

The main intuition behind a confidentiality proof for Zheng-SCTK is that an ad-
versary has no great advantage in the IND-CCA2 game unless he can determine
the value of κ corresponding to the challenge encapsulation. This is explicitly
true when we model the cryptographic hash function G as a random oracle: the
adversary will have no advantage whatsoever at distinguishing the output of
the random oracle from an element drawn at random from the oracle’s output

space, unless it actually queried the oracle on κ. It is evident that in this situa-
tion, the adversary’s advantage in winning the IND-CCA2 game is bounded by
the probability that they compute the value of κ. For all intents and purposes,
the following proof of the IND-CCA2 security of Zheng-SCTK is that of [3],
translated into the signcryption tag-KEM setting.

The important value κ is, per the specification of Zheng’s scheme, determined
by the relation

κ ≡ pkRn ≡ (pkRskS+r)s ≡ (pkS · gr)s·skR mod p. (5)

Given the public keys pkS and pkR, a challenge encapsulation E = (r, s), as well
as adaptive oracle access for encapsulation and decapsulation, how difficult is it
for the IND-CCA2 adversary A to compute κ? As is shown in [3], an adversary
who is able to do this may be tricked into solving arbitrary instances of the
Gap Diffie-Hellman problem. Given a specific GDH problem instance X(= gx

mod p), Y (= gy mod p), one may pick the values r and s that form the challenge
encapsulation at random, and set pkS ← (X ·g−rs)

1
s mod p and pkR ← Y . This

maintains the correct distributions of all four variables, while causing κ to equal
gxy mod p, the desired solution.

In order to present a consistent view to the adversary A, it is necessary to
simulate the oracles for symmetric key generation (OS), encapsulation (OE) and
decapsulation (OD). One may then use the provided Decisional Diffie-Hellman
(which takes three group elements as input, and returns > if and only if they are
a DDH triplet, otherwise ⊥) oracle to test all queries made by A to the random
oracle simulators OG and OH for the desired κ-value. However, since the oracles
presented to the IND-CCA2 adversary against Zheng-SCTK are being simulated
with imperfect information, it is necessary to ensure that the probability of A
asking κ to an oracle is kept negligibly close to that of the original (honest)
game.

Figures 11-13 give a complete specification of an algorithm that solves the
Gap Diffie-Hellman problem, using an efficient adversary against Zheng-SCTK
as a subroutine. In the specification, the GDH solution κ∗ = gxy mod p is not
known explicitly, although the values K = OG(κ∗) and r = OH(τ ||bind ||κ∗)
are used implicitly. Four lists, LG

1 , LH
1 , LG

2 and LH
2 , are used to maintain state

for the random oracle simulators OG and OH . The lists L∗1 maintain known
input/output pairs for the random oracles simulators. In contrast, the lists L∗2
are used to maintain consistency in situations where the input values are only
implicitly known due to incomplete information.

As argued previously, all initial data sent to A is of the right form and has
the correct distribution. It remains to show that the oracle simulators do not
introduce a non-negligible probability of causing different behaviour than their
real counterparts. One may begin by noting that the random oracle simulators
OG and OH behave like regular state-based random oracles, until the value κ∗

is detected using the DDH oracle. Furthermore, the symmetric key generation
oracle OS chooses random values for r and s and checks LG

1 and LG
2 for previous

entries before picking a new K, thus acting like its honest counterpart while
avoiding any conflicts with OG.

GDH-solver(I, X, Y ;ODDH):

r
R← Z/qZ.

s
R← Z/qZ.

E ← (r, s).

pkS ← (X · g−rs)
1
s mod p.

pkR ← Y .

K
R← K.

bind ← pkS ||pkR.

state1
R← A1(I, pkS , pkR;OS ,OE ,OD,OG,OH).

(state2 , τ)
R← A2(state1 , K;OS ,OE ,OD,OG,OH).

b′
R← A3(state2 , E;OS ,OE ,OD,OG,OH).

If the GDH solution has not been found, return a random group element.

Fig. 11: Specification of GDH-solving algorithm.

OG(κ):
If > ← ODDH(X, Y, κ):
Found the GDH solution!
Else if (κ, K) is in LG

1 :
Return K.
Else if > ← ODDH(Y, φ, κ)
for some (φ, K) in LG

2 :
Return K.
Else:
K

R← K.
Append (κ, K) to LG

1 .
Return K.

OH(τ ||bind ||κ):
If > ← ODDH(X, Y, κ):
Found the GDH solution!
Else if (τ ||bind ||κ, r) is in LH

1 :
Return r.
Else if (φ, τ ||bind , r) is in LH

2

and > ← ODDH(Y, φ, κ):
Return r.
Else:
r

R← Z/qZ.
Append (τ ||bind ||κ, r) to LH

1 .
Return r.

Fig. 12: Specification of random oracle simulators.

OS :

r
R← Z/qZ.

s
R← Z/qZ.

φ ← (pkS · gr)s mod p.
ω ← (r, s, φ).
Store ω, overwriting any previous value.
If > ← ODDH(Y, φ, κ) for some (κ, K) in
LG

1 : Return K.
Else if (φ, K) is in LG

2 : Return K.
Else:
K

R← K.
Append (φ, K) to LG

2 .
Return K.

OE(τ):
If no stored ω exists, return ⊥.
Else read ω from storage and erase it.
(r, s, φ) ← ω.
Append (φ, τ ||bind , r) to LH

2 .
E ← (r, s).
Return E.

OD(E, τ):
(r, s) ← E.
φ ← (pkS · gr)s mod p.

If φ = X: Return ⊥ and terminate.

If there exists (τ ′||bind ||κ, r′) in LH
1 such

that τ = τ ′ and > ← ODDH(yr, φ, κ):
If r 6= r′, return ⊥ and terminate.
Else if there exists (φ′, τ ′||bind , r′) in LH

2

such that φ = φ′ and τ = τ ′:
If r 6= r′, return ⊥ and terminate.
Else:
r′

R← Z/qZ.
Append (φ, τ ||bind , r′) to LH

2 .
If r 6= r′, return ⊥ and terminate.

If there exists (κ, K) in LH
1 such that

> ← ODDH(pkR, φ, κ):
Return K.
Else if there exists (φ′, K) in LH

2 such that
φ = φ′:
Return K.
Else:
K

R← K.
Append (φ, K) to LG

2 .
Return K.

Fig. 13: Specification of symmetric key generation, encapsulation and decapsu-
lation oracles.

The encapsulation oracleOE may however cause inconsistent behaviour when
it modifies LH

2 . This is because it creates the implicit relation r = OH(τ ||bind||φskR

mod p). Since r is chosen before τ is specified, the oracle has no way to guarantee
consistency with respect to previous entries in LH

1 and LH
2 made by OH , OE or

itself.
Consider an adversary who asks at most qH , qE and qD queries to the re-

spective oracles. In a worst case scenario for the simulation of OE , there may be
be at most qH + qD entries in the lists LH

1 and LH
2 when it is run the first time.

Each subsequent execution of the oracle adds another entry to LH
2 . Summing

the probability of failure over qe oracle queries thus gives a total probability of
qE(qE+2qD+2qH−1)

2q that an error occurs with respect to the consistency of OH in
the simulation of OE . This is negligible with respect to q.

In the case of the final oracle, all four I/O lists are carefully checked before any
entry is added, so there is no consistency problems caused during the execution.
However, if the computed value φ is equal to X, the simulator always returns
⊥. This is because it corresponds to κ∗ being part of the query, and proceeding
would reveal information about OG and OH to A, without learning the value
of κ∗. Hence it is necessary to bound the probability that OD is queried with a
pair

(
E = (r, s), τ

)
that is a valid encapsulation and that (pkS · gr)s = X and

that it is not the challenge encapsulation/tag pair (E∗, τ∗).
Consider a hypothetical query (E = (r′, s′), τ ′) for which this indeed is the

case. If this is a valid encapsulation, then H(τ ′, bind , κ∗) = r′. Assume by con-
tradiction that τ ′ = τ . Then r′ = r∗, since the input to the random oracle
is the same as for the challenge encapsulation. Furthermore, from the relation
(ys · gr∗)s∗ ≡ X ≡ (ys · gr′)s′(mod p) and the fact that all elements apart from
the identity element in Z/qZ are of order q, we may safely conclude that s′ = s∗

(unless the Gap Diffie-Hellman problem instance in question is trivial). Hence,
assume instead that τ ′ 6= τ∗. In this case, the probability of H(τ ′, bind , κ∗) being
equal to r′ is precisely 1

q , since H is a random oracle. The probability of this
occuring within qD oracle queries is hence at most qD

q , which is negligible with
respect to q.

Adding the different failure probabilities from oracle simulation yields a total
failure probability of at most

qE(qE + qD + 2qH − 1) + 2qD

2q
, (6)

which is negligible in q, and the advantage of the GDH-solver is hence negligibly
close to that of A winning the IND-CCA2 game against Zheng-SCTK. ut

B Proof of Theorem 4

The Chevallier-Mames signcryption tag-KEM is derived from the corresponding
signature scheme [8]. To prove the signcryption tag-KEM secure, it is important
to keep some key features of the signature scheme in mind. First of all, since the

signatures themselves are secure, it is possible to exploit the relation when prov-
ing the sUF-CMA security of the SCTK. Moreover, since the signature scheme is
based on a zero-knowledge protocol, it is straightforward to simulate signatures,
and by extension encapsulation oracle queries, in the random oracle model. The
security proofs for CM-SCTK resemble those of Zheng’s scheme, which is natural
given the underlying similarities.

B.1 sUF-CMA security of CM-SCTK

To prove that CM-SCTK is sUF-CMA secure, we provide a reduction to the sUF-
CMA security of Chevallier-Mames signatures. A specification of the Chevallier-
Mames signature scheme is given in Figure 14. Chevallier-Mames signatures are

Com(1k):
Pick a large prime q.
Let G be a cyclic group of order q, such
that the representation of the elements of
G is included in {0, 1}k.
Pick a generator g of G.
Pick cryptographic hash functions:
G : G → G.
H : {0, 1}∗ ×G6 → Zq.
I ← (q, G, g,G,H).
Return I.

Key(I):

sk
R← Zq.

pk ← gsk .
Return (sk , pk).

Sign(sk , m):

n
R← Zq.

u ← gn.
h ← H(u).
z ← hsk .
v ← hn.
c ← G(m, pk , g, z, h, u, v).
s ← n + c · sk mod q.
σ ← (z, c, s).
Return σ.

Ver(pk , m, σ):
(z, c, s) ← σ.
u′ ← gs · pk−c.
h′ ← H(u′).
v′ ← h′s · z−c.
c′ ← G(m, pk , g, z, h′, u′, v′).
If c = c′, return >.
Else, return ⊥.

Fig. 14: The Chevallier-Mames signature scheme.

quite similar to the key encapsulations output by CM-SCTK, with the main
difference being that the randomizer u is computed as gn rather than as skRn

as in the signcryption tag-KEM. In Figure 15, the forger F uses a CM signature
oracle OSign and random oracles OG and OH to simulate the runtime environ-
ment of a hypothetical adversary A against the signcryption tag-KEM. Three
lists, LG, LH and LKDF , are used to maintain state information.

To win the sUF-CMA game against CM-SCTK, A must return (τ, E) such
that E is a valid CM signature on τ ||pkR. Furthermore, Amust not have received
E as a response from the encapsulation oracle for the tag τ . If this is the case,
then the forger F never queried the signing oracle on τ ||pkR and got E in return.

F(pk ;OSign,OG,OH):
Form I and pkS from pk .

(skR, pkR)
R← KeyR(I).

(E, τ)
R← A(I, pkS , skR, pkR;OS ,OE ,Gsim,Hsim, KDFsim).

Return the signature E = (c, r, s) on the message τ ||pkR.

OS :

K
R← K.

Store K, overwriting any previous value.
Return K.

OE(τ):
If no stored K exists, return ⊥.
Else read K and erase it from storage.

(z, c, s)
R← OSign(τ ||pkR).

u ← (gs · pkS
−c)skR .

h ← Hsim(u).
v ← hs · z−c.
Add

(
(τ ||pkR, pkS , g, z, h, u, v), c

)
to LG.

Add (u, h) to LH .
Add (u, K) to LKDF .
Return (z, s, c).

Gsim(τ ||pkR, pkS , g, z, h, u, v):
Check if

(
(τ ||pkR, pkS , g, z, h, u, v), c

)
is in

LG.
If it is, return c.
Else, uCM ← u1/skR .
c ← OG(τ ||pkR, pkS , g, z, h, uCM , v).
Add

(
(τ ||pkR, pkS , g, z, h, u, v), c

)
to LG.

Return c.

Hsim(u):
Check if (u, h) is in LH .
If it is, return h.
Else, uCM ← u1/skR .
h ← OH(uCM).
Add (u, h) to LH .
Return h.

KDFsim(u):
Check if (u, K) is in LKDF .
If it is, return K.

Else, K
R← K.

Add (u, K) to LKDF .
Return K.

Fig. 15: Forgery algorithm F .

Hence, F returns a valid sUF-CMA forgery of the CM signature scheme when
A returns a valid sUF-CMA forgery of the CM signcryption tag-KEM.

As in the corresponding proof for Zheng-SCTK, the initial input given to A,
namely I, pkS , skR, pkR, are of the correct form and distributions. Furthermore,
each of the oracles OS , OE , Gsim, Hsim and KDFsim output values that are
internally consistent and from the correct spaces.

The only way that a simulation error may occur is if OE adds an entry to
one of the random oracle state lists that is inconsistent with previous entries.
Since OE explicitly uses Hsim to evaluate hashes, this is not a problem with
respect to LH . Furthermore, since OSign returns a valid signature on τ ||pkR,
any entry to LG made by OE will be consistent with previous entries made by
Gsim. However, since K is fixed by OS before the value of u is determined, we
are not guaranteed that LKDF will remain consistent.

Consider an adversary that first asks qKDF queries to the key derivation ora-
cle, and then asks qE queries to the symmetric key generation and encapsulation
oracles. The value of u is equal to gk·skR for some random k ∈ Zq, which means
that u is uniformly distributed on G. Hence, the probability that the i’th encap-
sulation query causes an inconsistency in the KDF oracle is at most qKDF +i−1

q .
The probability of a simulation failure after qE queries is thus at most

qE(2qKDF + qE − 1)
2q

, (7)

and we may conclude that the advantage of F at creating sUF-CMA forgeries
of CM signatures is negligibly close to that of A at forging the CM signcryption
tag-KEM. ut

One small result still needs to be established. This is because the original
article only proves that the Chevallier-Mames signature scheme is UF-CMA
secure [8]. Hence, a further argument is required to ensure that it is, in fact, also
sUF-CMA secure.

Theorem 6. The Chevallier-Mames signature scheme is sUF-CMA secure.

Proof. The proof of this result can easily be adapted from the original proof of
security [8]. Suppose a forger F outputs a message m and a signature (z, c, s),
and let n, u, h and v be the internal values associated with that signature. The
original proof of security for Chevallier-Mames signatures only used the fact that
the forger outputs a message m that has not been queried to the signing oracle
to ensure that the signing oracle never set the value of the output of the G oracle
on the input (m, pk , g, z, h, u, v).

However, suppose that the forger F outputs a message m on which it has
queried the signing oracle. Suppose further that this signing oracle query returns
the signature (z′, c′, s′) and that n′, u′, h′ and v′ are the internal values associated
with this signature. If that query set the output of the G oracle on the input
(m, pk , g, z, h, u, v), then it is clear that z = z′, h = h′, u = u′ and v = v′. We
may also conclude that c = c′ as c′ is defined to be the output of the G oracle.
So now we know

gs · pk−c = u = u′ = gs′ · pk−c (8)

and so s = s′ mod q. Hence, (z′, c′, s′) = (z, c, s). Therefore, the only way that the
signing oracle could have set the output of the G oracle on (m, pk , g, z, h, u, v) is if
the singing oracle was queried on the input m and returned the signature (z, c, s).
This means that if the forger F wins the sUF-CMA game, then the signing oracle
could not have set the output of the G oracle on this input (m, pk , g, z, h, u, v).
Once we have concluded this, the original proof of security of Chevallier-Mames
proves that the scheme is, in fact, sUF-CMA secure. ut

It should be noted that a similar proof for the sUF-CMA security of the Chevallier-
Mames signature scheme was developed independently by Chevallier-Mames [9].

B.2 IND-CCA2 security of CM-SCTK

We will use standard techniques to show that the CM-SCTK is IND-CCA2. If we
challenge the attacker to distinguish whether the key K∗ is encapsulated by the
challenge encapsulation (z∗, c∗, s∗), and we model the key derivation function
KDF as a random oracle, then the only way that the attacker can have any
advantage is by querying the KDF oracle on the input u∗ associated with the
signature. We arrange the input values so that this value is the solution to a CDH
problem. However, in order to simulate all the oracles to which the attacker has
access, we will need to have access to a DDH oracle. Hence, we reduce the IND-
CCA2 security of the CM-SCTK to the GDH problem.

Suppose we wish to solve a given instance of the GDH problem, i.e. we are
given X = gx and Y = gy, and we wish to find gxy. Since the value u∗ = pkRn∗ ,
we set pkR = Y and gn∗ = X. Now, from the specification of the verification
algorithm, we know that

XskR = u∗ = (gs∗ · pkS−c∗)skR and so pkS = (X/gs∗)c∗ .

Therefore, we choose s∗ and c∗ at random from Zq, and set pkS as above. Fur-
thermore, we randomly choose α∗ at random from Zq and set h∗ = H(u∗) = gα∗ .
We may now set z∗ = pkSα∗ and v∗ = Xα∗ . This gives us a completely con-
sistent challenge signcryption provided we make sure that we answer the oracle
queries H(u∗) and G(τ∗||pkR, pkS , g, z, h, u, v) correctly. Furthermore, all of the
variable are chosen from precisely the correct distributions. The specification of
the GDH solving algorithm is given in Figure 16.

We need to simulate the attacker access to the G, H, KDF oracles, as well
as the Sym, Encap and Decap oracles. We simulate direct queries to the G, H
and KDF oracles in a simple way, by generating responses to new queries at
random from the appropriate range and storing the outputs in a set of lists LG

1 ,
LH

1 and LKDF
1 . We use a second set of lists (LG

2 , LH
2 and LKDF

2) to store the
values that oracles must take in order to be consistent with the Encap oracle.
The specifications of the G, H and KDF oracles are given in Figure 17.

Next we turn our attention to the symmetric and encapsulation oracles. These
are detailed in Figure 18. This simulation is perfectly consistent provided that the
encapsulation algorithm doesn’t add an entry to the LG

2 list which is inconsistent

GDH-solver(I, X, Y ;ODDH):
(G, q, g) ← I.

c∗
R← Zq.

pkS ← (X/gs∗)c∗ .

α∗
R← Zq.

z∗ ← pkS
α∗ .

K∗ R← K.

s∗
R← Zq.

pkR ← Y .
h∗ ← gα∗ .
v∗ ← Xα∗ .
E∗ ← (z∗, c∗, s∗).

state1
R← A1(I, pkS , pkR;OS ,OE ,OD,OG,OH ,OKDF).

(state2 , τ∗)
R← A2(state1 , K∗;OS ,OE ,OD,OG,OH ,OKDF).

b′
R← A3(state2 , E∗;OS ,OE ,OD,OG,OH ,OKDF).

If the GDH solution has not been found, return a random group element.

Fig. 16: Specification of GDH-solving algorithm.

OKDF (u):
If > ← ODDH(X, Y, u).
Found the GDH solution!
Else if (u, K) is in LKDF

1 :
Return K.
Else if > ← ODDH(Y, φ, u) for some
(φ, K) in LKDF

2 :
Return K.
Else K

R← K.
Append (u, K) to LKDF

1 .
Return K.

OH(u):
If > ← ODDH(X, Y, u).
Found the GDH solution!
Else if (u, α, h) is in LH

1 :
Return h.
Else if > ← ODDH(Y, φ, u) for some
(φ, α, h) in LH

2 :
Return h.
Else α

R← Zq.
h ← gα.
Append (u, α, h) to LH

1 .
Return h.

OG(τ ||pkR, pkS , g, z, h, u, v):
If > ← ODDH(X, Y, u).
Found the GDH solution!
Else if

(
(τ ||pkR, pkS , g, z, h, u, v), c

)
is in LG

1 :
Return c.
Else if

(
(τ ||pkR, pkS , g, z, h, φ, v), c

)
is in LG

2 and > ← ODDH(Y, φ, u):
Return c.
Else c

R← Zq.
Append

(
(τ ||pkR, pkS , g, z, h, u, v), c

)
to LG

1 .
Return c.

Fig. 17: Specification of random oracle simulators.

with a previous G oracle query. In any single encapsulation oracle query, the c and
s values are chosen at random; hence, we know that φ is randomly distributed
over Zq. Therefore, the probability that the entry (τ ||pkR, g, z, h, φskR , v) has
been set in LG

1 by one of the direct G oracle query is at most qG/q. If the entry
(τ ||pkR, g, z, h, φ, v) has been set in LG

2 by a previous encapsulation oracle query,
then either the c we have randomly chosen is consistent, or we have found two
values (c, s) and (c′, s′) for which the computed φ value is the same. If this has
happened, then

gs · pkS−c = φ = gs′ · pkS−c′

and so the discrete logarithm of pkS is (s−s′)/(c−c′). From here we may recover
x and so solve the GDH problem. Therefore, the probability that the encapsula-
tion oracle is inconsistent with previous entries is (after qE encapsulation oracle
queries) bounded above by qEqG/q.

OS :

c
R← Zq.

s
R← Zq.

φ ← gs · pkS
−c.

If > ← ODDH(φ, Y, u) for some (u, K′)
in LKDF

1 or if (φ, K′) is in LKDF
2 then

K ← K′.
Else K

R← K.
Append (φ, K) to LKDF

2 .
ω ← (c, s, φ, K).
Store ω, overwriting any previous value.
Return K.

OE(τ):
If no stored ω exists, return ⊥.
Else read ω from storage and erase it.
(c, s, φ, K) ← ω.
If > ← ODDH(φ, Y, u) for some (u, α, h′)
is in LH

1 or if (φ, α, h′) in LH
2 then h ← h′.

Else α
R← Zq, h ← gα and append (φ, α, h)

to LH
2 .

z ← pkS
α.

v ← φα.
E ← (z, c, s).
If there exists (c′, s′, φ, z′, τ ′, K′) in LEncap

such that (c, s) 6= (c′, s′) then we have
found the GDH solution!
Else append

(
(τ ||pkR, pkS , g, z, h, φ, v), c

)

to LG
2 .

Append (c, s, φ, z, τ, K) to LEncap .
Return E.

Fig. 18: Specification of symmetric key generation and encapsulation oracles.

Lastly, we turn to the decapsulation algorithm. This algorithm is specified
in Figure 19. This algorithm perfectly simulates the decryption algorithm unless
we reject some valid signcryption of the form (z, c∗, s∗) and tag τ . We break this
into two cases: the case where such a query is first made before the challenge is
issued and the case where such a query is first made after the challenge is issued.
Before the challenge is issued, the attacker has no information about c∗ and s∗,
and so the probability that the attacker queries the decapsulation oracle on this
input is bounded above by qD/q2. The situation becomes more complex after
the challenge has been issued. In this case, we know that z 6= z∗ but

G(τ ||pkR, pkS , g, z, h, u, v) = c∗ .

This means that either there is an entry of the form((τ ||pkR, pkS , g, z, h, u, v), c∗)
in LG

1 , or an entry of the form ((τ ||pkR, pkS , g, z, h, u
1

skR , v), c∗) in LG
2 or that

G(τ ||pkR, pkS , g, z, h, u, v) = c∗ even though the attacker has not queried the G
oracle on this input (either implicitly or explicitly) yet. For a single decapsulation
oracle query, the probability that this occurs is bounded by (qG +qE +qD +1)/q.
Hence, the probability that this occurs at all in the simulation is bounded by
qD(qG + qE + qD + 1)/q.

OD(E, τ):
(z, c, s) ← E.
If (c, s) = (c∗, s∗) then return ⊥.
If there exists (c, s, φ′, z, τ, K) on LEncap for some φ′ and K, then return K.
φ ← gs · pkS

−c.
If > ← ODDH (φ, Y, u) for some (u, α, h) in LH

1 or if (φ, α, h) in LH
2 for some α and h,

then recover h and α from the appropriate list.

Else α
R← Zq, h ← gα and append (φ, α, h) to LH

2 .
v ← hs · z−c.
If > ← ODDH (φ, Y, u) for some ((τ ||pkR, pkS , g, z, h, u, v), c′) in LG

1 or if
((τ ||pkR, pkS , g, z, h, φ, v), c′) in LG

2 for some c′, then recover c′ from the appropriate
list.
Else c′

R← Zq and append ((τ ||pkR, pkS , g, z, h, φ, v), c′) to LG
2 .

If c′ 6= c then return ⊥.
If > ← ODDH (φ, Y, u) for some (u, K) in LKDF

1 or if (φ, K) in LKDF
2 for some K, then

recover K.
Else K

R← K and append (φ, K) to LKDF
2 .

Return K.

Fig. 19: Specification of the decapsulation oracle.

If we draw all of these terms together we get that

εIND ≤ εGDH − qGqE

q
− qD

q2
− qD(qG + qE + qD + 1)

q
(9)

where εIND and εGDH are the attacker’s advantage in breaking the IND-CCA2
security of the CM-SCTK and the probability that the algorithm we described
solves the GDH problem respectively. ut

C Proof of Theorem 5

The intuition behind Theorem 5 is quite simple. By construction, the signcryp-
tion tag-KEM does as little as possible. An adversary should have no room to do
anything interesting with the scheme, without having to break the underlying
signcryption scheme (which is assumed to be secure). To confirm our intuition,
we construct generic sUF-CMA and IND-CCA2 adversaries against signcryption
schemes with associated data, that use adversaries against the derived SCTK as
subroutines.

Signcryption schemes with associated data behave as one would expect; the
only difference in syntax is that an additional parameter representing the plain-
text data, denoted τ , is given as additional input to the signcryption and unsign-
cryption algorithms. An adversary against confidentiality should produce two
messages of the same length as well as a plaintext tag, and distinguish which
message has been signcrypted under that tag. An adversary against authenticity
and integrity should produce a message, an signcryptext and a tag, such that
the signcryptext and tag unsigncrypt to that message.

C.1 sUF-CMA security of the construction

With respect to the authenticity and integrity of the construction, we show that
an efficient sUF-CMA adversary A against the signcryption tag-KEM can be
used to construct an efficient sUF-CMA adversary B against the underlying
signcryption scheme.

A successful adversary against the SCTK returns an encapsulation E and a
tag τ , so that the unsigncryption algorithm returns a key K rather than the error
symbol ⊥. It is straightforward to verify that the resulting key, encapsulation
and tag will in fact be a valid forgery of the underlying signcryption scheme SC.
Figure 20 gives a complete specification of B.

B(I, pkS , skR, pkR;OSC):

(E, τ)
R← A(I, pkS , skR, pkR;OS ,OE).

K ← USC (pkS , skR, E, τ).
Return (K, E, τ).

OS :

K
R← K.

Store K, overwriting any previous value.
Return K.

OE(τ):
If no stored K exists, return ⊥.
Else read K and erase it from storage.

E
R← OSC(K, τ). Return E.

Fig. 20: sUF-CMA adversary against SC.

In the simulation in Figure 20, B wins if OSC never answered E on the query
(K, τ). Meanwhile, A wins the sUF-CMA game against SCTK whenever OE has
not answered E on the question τ . From the specification, it follows that OSC

has not answered E on the query (·, τ) for any key K. Hence B wins whenever A
does, which implies that the signcryption tag-KEM is sUF-CMA secure relative
to SC.

C.2 IND-CCA2 security of the construction

It is straightforward to make a convincing security argument for the IND-CCA2
security of signcryption tag-KEMs derived from signcryption schemes with sup-
ported associated data. As specified, the symmetric key generation algorithm

simply picks a random key, whereupon the encapsulation algorithm signcrypts
it. The supplied tag τ is only used as associated data for the signcryption algo-
rithm. This means that an efficient IND-CCA2 adversary against SCTK must
distinguish whether the challenge encapsulation corresponds to the signcryption
of the supplied key Kb, together with the associated data τ .

Figure 21 specifies an adversarial algorithm B that uses such an IND-CCA2
adversary A against the signcryption tag-KEM to break the IND-CCA2 security
of the underlying signcryption scheme SC3.

B1(I, pkS , pkR;OSC ,OUSC):

state1
R← A1(I, pkS , pkR;OS ,OE ,OD).

K0
R← K.

K1
R← K.

(state2 , τ∗)
R← A2(state1 , K0;OS ,OE ,OD).

Return (K0, K1, τ
∗, state2).

B2(state2 , σ∗;OSC ,OUSC):

b′
R← A3(state2 , σ∗).

Return b′.

OS : K
R← K.

Store K, overwriting any previous value.
Return K.

OE(τ) : If there exists no stored K:
Return ⊥ and terminate.
Else: read K and erase it.
E

R← OSC(K, τ).
Return E.

OD(E, τ):
Return OUSC(σ, τ).

Fig. 21: IND-CCA2 adversary against SC

Let b be the hidden bit that B is attempting to guess in the IND-CCA2 game
against SC. By the construction in Figure 21, it follows that A receives a valid
encapsulation if b = 0, and a random encapsulation otherwise. Hence, if A has
any advantage in the IND-CCA2 game against SCTK, then B will have the same
advantage attacking the original signcryption scheme SC.

3 On a technical note, it is necessary to assume that B chooses a representation of the
keyspace K for which all K ∈ K are of equal length.

