
Efficient KEMs with Partial Message Recovery

T.E. Bjørstad1, A.W. Dent2, and N.P. Smart3

1 The Selmer Center, Department of Informatics,
University of Bergen, Pb. 7800, N-5020 Bergen, Norway.

Email : tor.bjorstad@ii.uib.no
2 Information Security Group, Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, United Kingdom.
Email: a.dent@rhul.ac.uk

3 Department Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom.
Email: nigel@cs.bris.ac.uk

Abstract. Constructing efficient and secure encryption schemes is an
important motivation for modern cryptographic research. We propose
simple and secure constructions of hybrid encryption schemes that aim
to keep message expansion to a minimum, in particular for RSA-based
protocols. We show that one can encrypt using RSA a message of length
|m| bits, at a security level equivalent to a block cipher of κ bits in
security, in |m| + 4κ+ 2 bits. This is therefore independent of how large
the RSA key length grows as a function of κ. Our constructions are
natural and highly practical, but do not appear to have been given any
previous formal treatment.

1 Introduction

There are many important factors to consider when choosing a practical en-
cryption scheme, including speed, provable security, code size, and bandwidth
efficiency. Bandwidth efficiency is often only considered as an afterthought, but
for many real world problems this can be as important as keeping the compu-
tational and implementational complexity low. In particular this is the case for
wireless settings, where power consumption often is a limiting factor, and trans-
mitting data is a major power drain compared to the cost of doing some extra
(offline) computation [18].

Suppose that we wish to encrypt |m|-bit messages with a security level of
κ bits, for example κ = 128. The aim of this paper is to suggest secure proto-
cols which achieves the desired security level, while keeping the length of the
ciphertexts as close to |m| bits as possible. The existing ISO/IEC standard for
public-key encryption [17] only considers bandwidth efficiency for short messages
and does not give an RSA-based scheme that is efficient for arbitrary-length mes-
sages and arbitrary RSA key sizes.

To explain our starting point in more concrete terms, let Rκ denote the
size of an RSA key equivalent to κ bits of security, and similarly let Eκ be the

corresponding key size for elliptic curve based systems. At the time of writing,
it is widely believed that approximate values for these parameters are roughly
R80 = 1024, R128 = 3072, and Eκ = 2κ [14].

We first examine the problem by analogy with digital signature schemes.
Using the ECDSA signature scheme one obtains a short signature scheme with
appendix, of total length |m| + 2Eκ bits, that is, in addition to the original
message we get a signature appendix consisting of two group elements. With
pairings, it is possible to shrink the size of signatures to |m|+Eκ bits using the
BLS scheme [9]. Standard RSA-based schemes such as RSA-FDH [5] or RSA-PSS
[7], give signatures of length |m|+Rκ. For signature schemes based on RSA one
should therefore consider schemes that provide some kind of message recovery,
such as the message recovering variant of RSA-PSS, if bandwidth is a limiting
factor. Indeed, there may even be situations where bandwidth is so precious that
it is necessary to use elliptic-curve based schemes with message recovery, such
as [15].

We consider the similar situation for public key encryption schemes. The stan-
dard elliptic curve encryption scheme for arbitrary-length messages is ECIES,
which is a hybrid scheme modelled in the KEM+DEM framework [10]. This pro-
duces ciphertexts of length Eκ + |m|+ κ. For RSA the hybrid scheme of choice
is RSA-KEM [16], which leads to ciphertexts of length Rκ + |m|+ κ. While the
hybrid constructions are suitable for long messages, sufficiently short messages
may be encrypted using only a single group element using a purely asymmetric
encryption scheme, such as RSA-OAEP, [6, 17]. With RSA-OAEP, a message of
maximal length |m| is encoded together with two strings, each of length that of
a hash function output, as a single group element of size Rκ = |m|+ 4κ+ 2 bits.

Our initial question was whether the bandwidth requirements for hybrid en-
cryption schemes in the KEM+DEM framework may be reduced, in particular
that of the RSA-based schemes. In the usual KEM+DEM framework, the KEM
is used to encrypt a symmetric key, while the DEM is used to encrypt the mes-
sage itself (using a symmetric encryption scheme and the key from the KEM).
However, existing KEMs typically encode the symmetric key as a group element,
and hence require either Rκ or Eκ bits.

This disparity in expansion rate grows when the security level increases, as
the size of the groups grows much faster than the size of symmetric components.
This is not so much a problem for elliptic curve systems where the growth is
linear, but for factoring based systems the growth is quite pronounced, as shown
in Fig. 1.

For “long” messages, the overhead inherent in the key encapsulation is quite
negligible. However, in constrained environments it may be of significance, par-
ticularly when the messages being sent are on (roughly) the same order of mag-
nitude as the size of the group element representation. This motivates the design
and analysis of protocols that focus on keeping the message expansion to a min-
imum, at the expense of some additional algorithmic complexity.

Since Rκ in particular grows much faster than κ, it is natural to consider
whether we may embed part of the message as part of the key encapsulation, and

Symmetric key length (κ) Size of RSA modulus (Rκ) Size of elliptic curve (Eκ)

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

Fig. 1. Suggested parameter sizes (in bits) to maintain comparable security levels be-
tween different primitives, as recommended by NIST [14].

recover it during the decapsulation process. Such an approach was suggested for
the specific case of RSA-OAEP in [16], but to the best of the authors’ knowledge
no formal analysis of that composition has been published, nor is it mentioned
in the final ISO/IEC standard for public-key encryption [17].

In this paper we present a general concept of KEMs with message recovery, so-
called RKEMs. We define security models for RKEMs, and prove a composition
theorem which shows that a secure RKEM may be combined with an IND-CCA
and INT-CCA secure DEM to obtain an IND-CCA secure public key encryption
scheme. We then present a concrete example of an RKEM based on the RSA-
OAEP construction, which is secure in the random oracle model. In combination
with a standard Encrypt-then-MAC DEM, this results in a public key encryption
scheme with ciphertexts of length as low as |m|+5κ+3 bits, i.e. a scheme whose
messages does not depend on the size of the RSA modulus while providing κ-bit
security. We then extend the concept of RKEMs to the Tag-KEM framework
proposed by Abe et.al. [1] and propose a tag-RKEM based on the RSA-OAEP
construction, which is secure in the random oracle model and will encrypt a
message of length |m| as a ciphertext of length |m| + 4κ + 2. This is the most
space-efficient RSA-based construction known for long messages.

2 Definitions

2.1 Public Key Encryption

Our goal is to create bandwidth-efficient public key encryption schemes for
arbitrary-length messages.

Definition 1 (Public-Key Encryption Scheme). We define a public-key en-
cryption scheme PKE = (PKE .Gen,PKE .Enc,PKE .Dec) as an ordered tuple
of three algorithms:

1. A probabilistic key generation algorithm PKE .Gen. It takes as input a secu-
rity parameter 1κ, and outputs a private/public keypair (sk, pk). As part of
the public key there is a parameter PKE .msglen that specifies the maximum
length of messages that can be encrypted in a single invocation; this value
may be infinite.

2. A probabilistic encryption algorithm PKE .Enc. It takes as input a public key
pk and a message m of length at most PKE .msglen, and outputs a ciphertext
c.

3. A deterministic decryption algorithm PKE .Dec. It takes as input a private
key sk and a ciphertext c, and outputs either a message m or the unique
error symbol ⊥.

An encryption scheme must be sound, in the sense that the identity m =
PKE .Dec

(
sk,PKE .Enc(pk,m)

)
holds for valid keypairs (sk, pk) = PKE .Gen(1κ).

Although we assume throughout this paper that our cryptographic primitives are
perfectly sound, extension of our results to the case of non-perfect soundness is
straightforward, with standard techniques.

To discuss the security of an encryption scheme, we must define a formal
notion of what it means to “break” the scheme. Encryption schemes are designed
with the goal of confidentiality in mind: an adversary should not be able to
learn any useful information about encrypted messages. An encryption scheme
is said to be IND-secure if there does not exist an efficient adversary who, given
an encryption of two equal length messages, can determine which messages was
encrypted to form the ciphertext.

In practice, we want to construct public-key encryption schemes that main-
tain confidentiality even under adaptive chosen-ciphertext attack (-CCA), which
means that the adversary is allowed adaptive access to a decryption oracle. To
quantify the concept of security, we compare the success of an adversary with
the trivial “attack” of flipping a coin and guessing at random, and require that
the (asymptotic) gain must be a negligible function in the security parameter 1κ.

Definition 2 (Negligible function). A function f : N → R is said to be
negligible if for every polynomial p in N[x], there exists an x0 ∈ N such that
f(n) ≤ 1

|p(x)| for all x > x0.

We now define the IND-CCA attack game for public-key encryption.

Definition 3 (IND-CCA Game for PKE). The IND-CCA game for a given
public-key encryption scheme PKE is played between the challenger and a two-
stage adversary A = (A1,A2), which is a pair of probabilistic Turing machines.
For a specified security parameter 1κ, the game proceeds as follows:

1. The challenger generates a private/public keypair (sk, pk) = PKE .Gen(1κ).
2. The adversary runs A1 on the input pk. During its execution, A1 may query

a decryption oracle OD, that takes a ciphertext c as input, and outputs
PKE .Dec(sk, c). The algorithm terminates by outputting state information
s and two messages m0 and m1 of equal length.

3. The challenger picks a bit b R← {0, 1} uniformly at random, and computes
c∗ = PKE .Enc(pk,mb).

4. The adversary runs A2 on the input (c∗, s). During its execution, A2 has ac-
cess to the decryption oracle as before, with the limitation that it may not ask
for the decryption of the challenge ciphertext c∗. The algorithm terminates
by outputting a guess b′ for the value of b.

We say that A wins the IND-CCA game whenever b = b′. The advantage of A
is the probability

AdvIND−CCA
PKE (A) =

∣∣Pr[A wins]− 1/2
∣∣.

A scheme is said to be IND-CCA secure if the advantage of every polynomial-
time adversary is negligible (as a function of the security parameter). For specific
schemes, we rarely have unconditional security, and speak instead of security with
respect to some well-known reference problem that is thought to be difficult (such
as the RSA or Diffie-Hellman problems).

2.2 Hybrid Encryption

Hybrid encryption is the practice of constructing public-key encryption schemes
using a symmetric-key cipher as a building block. Although this adds a certain
amount of complexity, it also enables PKE schemes to handle messages of more or
less unrestricted length, at a low computational cost. The standard construction
paradigm for hybrid encryption schemes is the KEM+DEM framework [10], in
which a scheme is divided into two parts: an asymmetric Key Encapsulation
Mechanism (KEM) and a symmetric Data Encapsulation Mechanism (DEM).
Not only does this allow the encryption of arbitrary length messages but it also
means that the PKE scheme obtained, by generically combining a secure KEM
and a secure DEM, is itself secure [10]. This means that the components can be
analysed separately and combined in a mix-and-match fashion.

Various modifications and variations of the basic KEM+DEM construction
have also been proposed. In particular, we note the Tag-KEM schemes proposed
in [1]. In Appendix A we present the standard definitions of a KEM and a DEM,
how they are combined, and the appropriate security models for each.

3 KEMs with Partial Message Recovery

3.1 KEMs with Partial Message Recovery

In this section we introduce the notion of a KEM with partial message recovery
(or RKEM). A KEM with partial message recovery is, quite simply, the use of
public-key encryption to transmit a symmetric key and some partial message
data in a secure manner. An obvious instantiation of such a scheme is to use
a secure non-hybrid PKE to encrypt the “payload”, although alternate imple-
mentations may also be possible. We will show that the obvious construction is
indeed secure, and that the resulting RKEM+DEM hybrid encryption produces
shorter messages than the traditional KEM+DEM construction.

Definition 4 (RKEM). We define a KEM with partial message recovery to
be an ordered tuple RKEM = (RKEM .Gen,RKEM .Encap,RKEM .Decap) con-
sisting of the following algorithms:

1. A probabilistic key generation algorithm RKEM .Gen. It takes a security pa-
rameter 1κ as input, and outputs a private/public keypair (sk, pk). As part of
the public key there are two parameters, RKEM .msglen and RKEM .keylen.
The value RKEM .msglen, which we assume is finite, denotes the maxi-
mum amount of message data that may be stored in an encapsulation, and
RKEM .keylen denotes the fixed length of the symmetric key generated by the
RKEM .

2. A probabilistic key encapsulation algorithm RKEM .Encap. It takes as input
a public key pk, and a message m of length at most RKEM .msglen. The al-
gorithm terminates by outputting a symmetric key k of length RKEM .keylen
and an encapsulation ψ.

3. A deterministic key decapsulation algorithm RKEM .Decap. It takes as input
a private key sk and an encapsulation ψ. The algorithm outputs either the
unique error symbol ⊥, or a pair (k,m) consisting of a symmetric key k of
RKEM .keylen bits, and a message m of RKEM .msglen bits.

If RKEM .Encap and RKEM .Decap are run using a valid keypair (sk, pk) and the
ψ output by the encapsulation algorithm is used as input to the decapsulation
algorithm, then the probability of failure is assumed to be zero. Furthermore,
the decapsulation algorithm is required to output the same values of k and m
as were associated with the encapsulation algorithm.

3.2 Security Definitions for RKEMs

Since the plaintext message is given as input to the encapsulation algorithm,
it is necessary to adopt two separate security requirements for such RKEMs.
First, we define the IND-CCA game for an RKEM similarly to that for a regular
KEM, in which the adversary tries to distinguish whether a given key is the one
embedded in a specified encapsulation.

Definition 5 (IND-CCA for RKEM). The IND-CCA game for a given
RKEM is played between a challenger and an adversary A = (A1,A2). For
a particular security parameter 1κ, the game runs as follows.

1. The challenger generates a keypair (sk, pk) = RKEM .Gen(1κ).
2. The adversary runs A1 on the input pk. During its execution, A1 may query a

decapsulation oracle OD that takes an encapsulation ψ as input, and outputs
the result of computing RKEM .Decap(sk, ψ). The algorithm terminates by
outputting a message m of length at most RKEM .msglen bits, as well as
some state information s.

3. The challenger computes (k0, ψ
∗) = RKEM .Encap(pk,m), and draws an-

other key k1
R← {0, 1}RKEM .keylen as well as a random bit b R← {0, 1} uni-

formly at random
4. The adversary runs A2 on the input (s, kb, ψ∗). During its execution, A2 has

access to the decapsulation oracle as before, with the restriction that it may
not ask for the decapsulation of the challenge ψ∗. The algorithm terminates
by outputting a guess b′ for the value of b.

We say that A wins the game whenever the guess was correct, i.e. b = b′. The
advantage of A is given as

AdvIND−CCA
RKEM (A) =

∣∣Pr[A wins]− 1/2
∣∣.

The other criterion relates to the confidentiality of the message used as input,
and is represented by adopting the notion of RoR-CCA security from [3, 13]. The
term RoR stands for real-or-random, which is because in this security definition
an adversary is unable to tell a valid encryption of a message, from a random
ciphertext. It can be shown that RoR-CCA security is equivalent to indistin-
guishability with respect to the message, but we shall not apply this equivalence
directly. Instead, we only require the RoR-CCA property of the RKEM to imply
that the full hybrid encryption scheme is IND-CCA secure.

Definition 6 (RoR-CCA for RKEM). The RoR-CCA game for KEMs with
partial message recovery is defined as follows:

1. The challenger generates a keypair (sk, pk) = RKEM .Gen(1κ).
2. The adversary runs A1 on the input pk. During its execution, A1 may query a

decapsulation oracle OD that takes an encapsulation ψ as input, and outputs
the result of computing RKEM .Decap(sk, ψ). The algorithm terminates by
outputting a message m0 of length at most RKEM .msglen bits, as well as
some state information s.

3. The challenger generates a random message m1, which is of the same length
as m0, a random bit b R← {0, 1}, and computes (k∗, ψ∗) = RKEM .Encap(pk,mb).

4. The adversary runs A2 on the input (s, k∗, ψ∗). During its execution, A2 has
access to the decapsulation oracle as before, with the restriction that it may
not ask for the decapsulation of the challenge ψ∗. The algorithm terminates
by outputting a guess b′ for the value of b.

We say that A wins the game whenever the guess was correct, i.e. b = b′. In
each case the advantage of A is

AdvRoR−CCA
RKEM (A) =

∣∣Pr[A wins]− 1/2
∣∣.

Note that IND-CCA security definition really is about the ability of the
adversary to determine whether a specified key is real or random, and RoR-
CCA security is about the ability of the adversary to determine whether the
embedded message is real or random. Hence, a more accurate nomenclature
would be K-RoR-CCA and M-RoR-CCA, but we use the above nomenclature to
stress the link with prior security definitions for standard KEMs.

3.3 Security of the Composition of an IND-CCA and RoR-CCA
secure RKEM and an IND-PA and INT-CTXT secure DEM

Combining an RKEM with a DEM is done in the straightforward manner:

Definition 7 (RKEM+DEM Construction). Given an RKEM and a DEM
where the keys output by the RKEM are of the correct length for use with the
DEM, i.e. RKEM .keylen = DEM .keylen, we construct a hybrid PKE scheme as
follows.

– The key generation algorithm PKE .Gen executes RKEM .Gen to produce a
private / public keypair, and appends any necessary information about the
operation of the DEM.

– The encryption algorithm PKE .Enc is implemented as follows.
1. The message m is padded to be of size at least RKEM .msglen − 1.
2. The message m is then split into two component m(0) and m(1), i.e.

m = m(0)||m(1), where m(0) is of length RKEM .msglen − 1.
3. Set v = 1, unless m(1) = ∅, in which case we set v = 0.
4. Compute a key/encapsulation pair (k, ψ) = RKEM .Encap(pk,m(0)||v).
5. If v = 1 then encrypt the remaining part of the message to obtain a

ciphertext χ = DEM .EncK(m(1)), otherwise set χ = ∅.
6. Output the ciphertext c = (ψ, χ).

– The decryption algorithm PKE .Dec is implemented as follows.
1. Parse the ciphertext to obtain (ψ, χ) = c.
2. Recover the key and message fragment from ψ by computing (k,m(0)||v) =

RKEM .Decap(sk, ψ).
3. If k = ⊥, return ⊥ and halt.
4. If v = 1 and χ 6= ∅, return ⊥ and halt.
5. If v = 0, return m(0) and halt.
6. Compute m(1) = DEM .Deck(χ).
7. If m(1) = ⊥, return ⊥ and halt.
8. Output m(0)||m(1).

The soundness of the RKEM+DEM construction follows from the soundness
of the individual RKEM and DEM.

In the case where |m| ≤ RKEM .msglen, there are few practical reasons to
use the hybrid setup at all, and this is included mainly to avoid placing any
artificial restrictions on our allowable message space. Our definition is no longer
optimal in this case, since there is no reason to encapsulate a symmetric key
k at all. We note that an alternate definition could specify that RKEM .Decap
returns a binary string s instead of k and m(1)||v, which may then be parsed
and interpreted depending on the value of v. The distinction is not important
for our analysis, and is omitted in the further discussion for the sake of clarity.

Theorem 1 (Security of RKEM+DEM). If the underlying RKEM is both
IND-CCA and RoR-CCA secure and the DEM is IND-PA and INT-CTXT se-
cure4, then the above composition is IND-CCA secure.

More precisely we have, that if there is an adversary A against the above
public key scheme, then there are polynomial-time adversaries B1,B2,B3 and B4

4 The security definitions for DEMs are given in the Appendix.

such that

AdvIND−CCA
PKE (A) ≤ 2 ·AdvIND−CCA

RKEM (B1) + qD ·AdvINT−CTXT
DEM (B2)

+ 2 ·AdvRoR−CCA
RKEM (B3) + AdvIND−PA

DEM (B4),

where qD is an upper bound on the number of decryption queries made by A.

Proof. Let A denote our adversary against the hybrid PKE system and let Game
0 be the standard IND-CCA game for a PKE. We prove the security by succes-
sively modifying the game in which A operates. In Game i, we let Ti denote the
event that b = b′. Hence

AdvIND−CCA
PKE (A) = |Pr[T0]− 1/2|.

Let Game 1 be the same as Game 0 except that if the challenger is asked
by the adversary to decrypt a ciphertext (ψ∗, χ), where ψ∗ is equal to the
encapsulation-part of the challenge, then it uses the key k∗ output by the en-
capsulation function when it decrypts χ, i.e. it only uses the valid decryption
algorithm associated to the RKEM to obtain m(0). Since we assume that our al-
gorithms are perfectly sound this is purely, at this stage, a conceptual difference,
i.e.

Pr[T0] = Pr[T1].

Game 2 proceeds identically to Game 1, except for in the computation of the
second component χ∗ of the challenge ciphertext, where a random key k′ is used
instead of the key k∗ that was returned by RKEM .Encap. It is clear that there
exists a machine B1, whose running time is essentially that of A, which can turn
a distinguisher between the two games into an adversary against the IND-CCA
property of the RKEM. We have

|Pr[T1]− Pr[T2]| ≤ 2 ·AdvIND−CCA
RKEM (B1).

Let Game 3 be the same as Game 2 except that when the challenger is
asked by the adversary to decrypt a ciphertext (ψ∗, χ), where ψ∗ is equal to the
encapsulation-part of the challenge, then it simply rejects the ciphertext. It is
clear that there exists a machine B2, whose running time is essentially that of A,
which can turn a distinguisher between the two games into an adversary against
the INT-CTXT property of the DEM. We have

|Pr[T2]− Pr[T3]| ≤ qD ·AdvINT−CTXT
DEM (B2).

In Game 4, we change the computation of the encapsulation so that it en-
capsulates a random string instead of the first part of the message m(0), but we
encrypt the second part of the message as in Game 2. Again, it is clear that there
exists a machine B3, whose running time is essentially that of A, which can turn
a distinguisher between the two games into an adversary against the RoR-CCA
property of the RKEM. We have

|Pr[T3]− Pr[T4]| ≤ 2 ·AdvRoR−CCA
RKEM (B3).

Finally, in Game 4 we note that the first component of the ciphertext is
completely random and independent of any message, and that the second part
of the ciphertext is an encryption under a completely random key k∗. Hence, the
adversary in Game 4 is essentially just an algorithm B4 which is attacking the
IND-PA property of the DEM, i.e.

|Pr[T4]− 1/2] ≤ AdvIND−PA
DEM (B4).

Putting the above equalities together we obtain the stated result

AdvIND−CCA
PKE (A) = |Pr[T0]− 1/2| = |Pr[T1]− 1/2|

= |(Pr[T1]− Pr[T2]) + (Pr[T2]− Pr[T3])
+(Pr[T3]− Pr[T4]) + (Pr[T4]− 1/2)|

≤ |Pr[T1]− Pr[T2]|+ |Pr[T2]− Pr[T3]|
+ |Pr[T3]− Pr[T4]|+ |Pr[T4]− 1/2]|

≤ 2AdvIND−CCA
RKEM (B1) + qD ·AdvINT−CTXT

DEM (B2)
+ 2AdvRoR−CCA

RKEM (B3) + AdvIND−PA
DEM (B4).

ut

3.4 Constructions of RKEMs

A secure RKEM may be instantiated from an IND-CCA secure PKE in the
obvious manner: use the PKE to encrypt the state bit, the κ-bit symmetric
session key, and PKE .msglen − κ − 1 bits of message payload. It is easy to
show that this construction is both IND-CCA and RoR-CCA secure, and that
this is tightly related to the IND-CCA security of the underlying PKE 5. If we
implement this trivial scheme using RSA-OAEP, the total length of ciphertexts
will be |m|+ 6κ+ 3; in the particular case of κ = 128 we save roughly 2400 bits
in comparison with RSA-KEM.

However, the efficiency of our construction can be improved even further
for a particular class of IND-CCA secure public-key encryption schemes. Let
c = E(pk,m; r) denote a public key encryption algorithm taking a random string
r as auxiliary input, with associated decryption function m = D(sk, c). We say
that a public key algorithm is randomness recovering, if the decryption algorithm
D(sk, c) can be modified so that it returns not only m but also the randomness
used to construct c, i.e. we have that if c = E(pk,m; r) then (m, r) = D(sk, c).
Such a scheme is said to be secure if it is IND-CCA secure with respect to the
message m, and is OW-CPA secure with respect to the pair (m, r).
5 In particular, the adversary is being given a challenge for the RKEM consisting

of the encapsulation ψ∗, and a decapsulation oracle that computes (k,m(0)||v) =
RKEM .Decap(sk, ψ), where k|m(0)|v = PKE .Dec(sk, c). In both the IND-CCA and
ROR-CCA games the goal of the adversary is to determine some property of part
of the “plaintext”, either k or m(0). Whenever PKE is itself IND-CCA this is clearly
not feasible.

There exist various practical public key encryption schemes that are securely
randomness recovering, including RSA-OAEP and any scheme constructed using
the Fujisaki-Okamoto transform [12]. In both of these constructions the IND-
CCA security is standard, whilst the OW-CPA security with respect to the pair
(m, r) follows from the OW-CPA security of the underlying primitive. We can
use this to create a RKEM which incurs less overhead compared to the maximal
message length of the underlying PKE.

Our IND-CCA and RoR-CCA secure RKEM is constructed as follows:

– RKEM .Gen is defined to be the key generation of the public key scheme,
plus the specification of a hash function H. The parameter RKEM .msglen is
a single bit less than the maximum message length of the public key scheme,
and RKEM .keylen is the output length of H.

– RKEM .Encap takes a message m of length RKEM .msglen. It then computes
ψ = E(pk,m; r) for some randomness r, k = H(m||r) and returns (k, ψ).

– RKEM .Decap takes the encapsulation ψ and decrypts it using D(sk, ψ). If
D(sk, ψ) returns ⊥, then the decapsulation algorithm returns ⊥ and halts.
Otherwise the pair (m, r) is obtained and the algorithm proceeds to compute
k = H(m||r) and returns (m, k).

The RoR-CCA security of the above RKEM construction follows from the
IND-CCA security of the underlying public key encryption scheme. The IND-
CCA security follows, in the random oracle model, from the OW-CPA security
of the underlying primitive with respect to the pair (m, r), using essentially the
same proof of security as for standard RSA-KEM [16].

As mentioned in the introduction, by using RSA-OAEP in this construc-
tion one can obtain a public key encryption algorithm for messages of length
m, which outputs ciphertexts of length |m| + 5κ + 3 bits for a given security
parameter κ. This breaks down as follows: the RSA-OAEP encryption scheme
(as defined in the ISO/IEC standard for public-key encryption [17]) has over-
head of 2 Hash.len + 2 bits, where Hash.len is the length of the output from
a cryptographic hash function, commonly taken to be 2κ bits6. Furthermore, a
single state bit is used to keep track of the message length inside the RKEM.
Finally, the usual method of constructing a DEM that is INT-CTXT requires a
κ-bit message authentication code (MAC). In comparison with RSA-KEM using
κ = 128, this scheme saves more than 2500 bits per message!

As we see, the above construction gives ciphertexts that are independent
of the size of the RSA modulus used, being linear in the security parameter.
Furthermore, we are able to extend the limited message space of the underlying
RSA-based primitive “optimally”, with only κ+ 1 bits of overhead!

4 Tag-KEMs with Partial Ciphertext Recovery

After having discussed KEMs with partial message recovery it is natural to look
at other formal models that exist for hybrid encryption schemes. In this section
6 Although it may appear from the original OAEP paper that this should be only κ

bits, it is necessary to use 2κ bits to deal with a more realistic attack model [2].

we consider Tag-KEMs [1], which have recently come into prominence as an
attractive alternative to traditional KEMs. The main difference from regular
KEMs is that the key encapsulation is used to preserve the integrity of the
ciphertext, in addition to confidentiality of the symmetric key. The main result
of [1] is that the use of Tag-KEMs makes it possible to create secure encryption
schemes using a DEM that is only IND-PA. We define Tag-KEMs with partial
ciphertext recovery (tag-RKEM) by direct extension of the previous definition
in [1].

Definition 8 (Tag-KEM with Partial Ciphertext Recovery). A Tag-
KEM with partial ciphertext recovery (tag-RKEM) is defined as an ordered tuple
of four algorithms.

1. A probabilistic algorithm TKEM .Gen used to generate public keys. It takes a
security parameter 1κ as input, and outputs a private/public keypair (sk, pk).
The public key includes all information needed for users of the scheme, in-
cluding parameters specifying the length of the symmetric keys used (TKEM .keylen)
and the size of the internal message space (TKEM .msglen).

2. A probabilistic algorithm TKEM .Sym used to generate one-time symmetric
keys. It takes a public key pk as input, and outputs a symmetric encryption
key k and a string of internal state information s.

3. A probabilistic algorithm TKEM .Encap used to encapsulate the symmetric
key and part of the ciphertext. It takes some state information s as well as a
tag τ as input, and outputs a key encapsulation ψ together with a suffix string
τ (1) of τ = τ (0)||τ (1) (consisting of the part of τ that may not be recovered
from ψ).

4. A deterministic algorithm TKEM .Decap used to recover the encapsulated key
and ciphertext fragment from an encapsulation. It takes a private key sk, an
encapsulation ψ and a partial tag τ (1) as input, and outputs either a key k
and the complete tag τ , or the unique error symbol ⊥.

A Tag-KEM is required to be sound in the obvious manner, i.e. for any τ
and keypair (sk, pk) we have that TKEM .Decap(sk, ψ, τ (1)) = (k, τ) whenever
(ψ, τ (1)) = TKEM .Encap(ω, τ) and (k, ω) = TKEM .Sym(pk). We note that the
definition collapses to that of [1] if we set TKEM .msglen = 0.

4.1 Security Definition for Tag-KEMs with Partial Ciphertext
Recovery

A Tag-RKEM is said to be IND-CCA secure if there does not exist an adversary
who can distinguish whether a given key k∗ is the one embedded in an encap-
sulation ψ∗. The adversary has access to a decapsulation oracle, and is allowed
to choose the tag τ∗ used in the challenge encapsulation adaptively, but may
not query the decapsulation oracle on the corresponding (ψ∗, τ (1)∗). This cor-
responds to the notion of IND-CCA security for RKEMs used in the previous
section, and is directly analogous to the security definition for regular Tag-KEMs
[1].

Definition 9 (IND-CCA Security of Tag-RKEM). For a given security
parameter 1κ, the IND-CCA game played between the challenger and an adver-
sary A = (A1,A2,A3) runs as follows.

1. The challenger generates a private / public keypair (sk, pk) = TKEM .Gen(1κ).
2. The adversary runs A1 on the input pk. During its execution, A1 may query

a decapsulation oracle ODecap(·, ·) which takes an encapsulation ψ and a tag
τ (1) as input, and returns the result of computing TKEM .Decap(sk, ψ, τ (1)).
The algorithm terminates by outputting some state information s1.

3. The challenger computes (k0, ω) = TKEM .Sym(pk), and samples another
key k1

R← {0, 1}TKEM .keylen uniformly at random. He then selects a random
bit b R← {0, 1}.

4. The adversary runs A2 on the input (s1, kb). During its execution, A2 has
access to the same oracle as before. The algorithm terminates by outputting
some state information s2 and a tag τ∗.

5. The challenger generates a challenge encapsulation

(ψ∗, τ (1)∗) = TKEM .Encap(s1, τ∗).

6. The adversary runs A3 on the input (s2, ψ∗, τ (1)∗). During its execution, A3

has access to the same oracle as before, with the restriction that the challenge
(ψ∗, τ (1)∗) may not be queried. The algorithm terminates by outputting a
guess b′ of the value of b.

We say that A wins the game whenever the guess was correct, i.e. b = b′. The
advantage of A is given as

AdvIND−CCA
TKEM (A) =

∣∣Pr[A wins]− 1/2
∣∣.

Sym

Enc

pk

Encap

m

Decap

Decχ

ω

k

sk

(k,χ)

m

(ψ,χ(1))

Fig. 2. Data flow in the Tag-KEM + DEM construction.

The security definition for Tag-RKEMs is versatile, in the sense that for a
Tag-RKEM to be IND-CCA it must not only ensure that its symmetric keys
are indistinguishable from random with respect to their encapsulations, but also

enforce certain non-malleability conditions with respect to τ . In particular, since
the adversary is able to submit decapsulation oracle queries adaptively on ψ and
τ (1), the decapsulation procedure must be non-malleable in the sense that oracle
queries such as (ψ∗, τ (1)) or (ψ, τ (1)∗) reveal no information about k∗.

4.2 Security of the Composition of an IND-CCA secure Tag-RKEM
and an IND-PA secure DEM

Combining a Tag-RKEM with a DEM is done by using the key from TKEM .Sym
with DEM .Enc to produce a ciphertext, and using the resulting ciphertext as
the tag for TKEM .Encap. The overall data-flow is illustrated in Fig. 2.

Definition 10 (TKEM+DEM Construction). Given a TKEM and a DEM
where the keys output by the TKEM are of correct length for use with the DEM,
we construct a hybrid PKE scheme as follows.

– The key generation algorithm PKE .Gen is implemented by using RKEM .Gen
and appending any necessary information about the DEM to the public key.

– The encryption algorithm PKE .Enc is implemented as follows.
1. Compute a symmetric key (k, ω) = TKEM .Sym(pk).
2. Compute the symmetric ciphertext χ = DEM .Enck(m).
3. Create a key encapsulation using the ciphertext χ as the tag, by computing

(ψ, χ(1)) = TKEM .Encap(ω, χ).
4. Output the ciphertext c = (ψ, χ(1)).

– The decryption algorithm PKE .Dec is implemented as follows.
1. Parse the ciphertext to obtain (ψ, χ(1)) = c.
2. Recover k and χ from ψ and χ(1) by computing (k, χ) = TKEM .Decap(sk,

ψ, χ(1)).
3. If TKEM .Decap returned ⊥, return ⊥ and halt.
4. Recover the original message by running m = DEM .Deck(χ).
5. If DEM .Dec returned ⊥, return ⊥ and halt.
6. Output m.

The soundness of the above construction follows from the soundness of the
individual tag-RKEM and DEM. We note that this construction embeds part
of the symmetric ciphertext rather than plaintext in the encapsulation, which
explains why we no longer require RoR-CCA security (with respect to the mes-
sage). This fact simplifies security analysis a great deal.

Theorem 2 (Security of TKEM+DEM). If the underlying Tag-KEM with
partial ciphertext recovery is IND-CCA secure and the DEM is IND-PA secure,
then the TKEM+DEM composition is secure.

More precisely we have, that if there is an adversary A against the above
hybrid public key scheme, then there are polynomial-time adversaries B1,B2 such
that

AdvIND−CCA
PKE (A) ≤ 2 ·AdvIND−CCA

TKEM (B1) + AdvIND−PA
DEM (B2).

Proof. LetA denote our adversary against the hybrid PKE system, and let Game
0 be the standard IND-CCA game for a PKE. We prove the security by making
a single modification to Game 0, which causes the maximal advantage of any A
to be clearly bounded. We define T0 and T1 to be the event that b = b′ in Games
0 and 1.

Let Game 1 be the same as Game 0, except that the challenger creates the
symmetric ciphertext using a key k∗ picked uniformly at random, rather than
the key output by TKEM .Sym. It is clear that there exists a machine B1 whose
running time is essentially that of A, which can turn a distinguisher between
the two games into an adversary against the IND-CCA property of the TKEM.
Hence we have that

|Pr[T0]− Pr[T1]| = 2 ·AdvIND−CCA
TKEM (B1).

However, in Game 1 the value of the challenge encapsulation ψ∗ reveals no
information about the key k∗ used to create the ciphertext χ, since the sym-
metric key k∗ was sampled independently of ω∗. Hence, the only information
about the value of mb available to A is the symmetric ciphertext fragment χ(1)∗

(and plausibly the full symmetric ciphertext χ∗, depending on how the TKEM
is constructed). Furthermore, the adversary is not able to make any adaptive
decryption queries under k∗. Hence there exists a machine B2 whose running
time is essentially that of A, such that

|Pr[T1]− 1/2| = AdvIND−PA
DEM (B2).

Summarising, we obtain the stated result.

AdvIND−CCA
PKE (A) ≤ 2 ·AdvIND−CCA

TKEM (B1) + AdvIND−PA
DEM (B2).

ut

4.3 Constructions of Tag-KEMs with partial ciphertext recovery

Having established that Tag-KEMs with partial ciphertext recovery are viable
in principle, it remains to suggest a practical instantiation. We generalise a con-
struction of Dent [11] to the tag-RKEM setting. This constructions makes use of
an IND-CPA encryption scheme (PKE .Gen,PKE .Enc,PKE .Dec) and two hash
functions H and KDF . We suppose that the message space of the encryption
scheme is PKE .msglen and we use the notation PKE .Enc(m, pk; r) to denote
applying the encryption algorithm to a message m with a public key pk using
random coins r. We require two security properties of the encryption scheme:
that it is γ-uniform and that it is partially one-way.

Definition 11 (γ-uniform). An encryption scheme

(PKE .Gen,PKE .Enc,PKE .Dec)

is γ-uniform if, for all possible messages m and ciphertexts c

Pr[PKE .Enc(m, pk) = c] ≤ γ

where the probability is taken over the random coins of the encryption algorithm.

Definition 12 (POW-CPA). An encryption scheme (PKE .Gen, PKE .Enc,
PKE .Dec) is partially one way with respect to inputs of length ` ≤ PKE .msglen
if no probabilistic polynomial-time attacker A = (A1,A2) can win the following
game with non-negligible probability:

1. The challenger generates a key pair (pk, sk) = PKE .Gen(1κ).
2. The attacker runs A1 on the input pk. A1 terminates by outputting a tag τ

of length PKE .msglen − ` and some state information s,
3. The challenger randomly chooses a seed value α of length `, sets m = α||τ

and computes c∗ = PKE .Enc(m, pk).
4. The attacker runs A2 on the input (c∗, s). A2 terminates by outputting a

guess α′ for α.

The attacker wins if α′ = α.

Note that if the encryption scheme is IND-CPA and ` is super-poly-logarithmic
as a function of the security parameter, then the encryption scheme is POW-CPA
secure.

We assume that we can split PKE .msglen into two lengths TKEM .keylen
and TKEM .msglen such that PKE .msglen = TKEM .keylen + TKEM .msglen.
We construct the tag-RKEM as follows:

1. TKEM .Gen runs PKE .Gen to generate a public/private key pair, and ap-
pends the values of TKEM .keylen and TKEM .msglen to the public key.

2. TKEM .Sym picks a random seed α of length TKEM .keylen and derives a
key k = KDF (α). The algorithm outputs the state information s = (pk, α)
and the key k.

3. TKEM .Encap runs in several steps:
(a) Parse s as (pk, α).
(b) Parse τ as τ (0)||τ (1) where τ (0) is TKEM .msglen-bits long if τ con-

tains more than TKEM .msglen bits and τ (0) = τ if τ is less than
TKEM .msglen bits in length.

(c) Compute m = α||τ (0).
(d) Compute r = H(α, τ).
(e) Compute ψ = PKE .Enc(m, pk; r).
(f) Output ψ.

4. TKEM.Decap runs in several steps:
(a) Compute m = PKE .Dec(ψ, sk).
(b) Parse m as α||τ (0) where α is TKEM .keylen bits in length.
(c) If τ (0) is less than TKEM .msglen bits in length and τ (1) 6= ∅, then output
⊥.

(d) Compute τ = τ (0)||τ (1).
(e) Compute r = H(α||τ).
(f) If ψ 6= PKE .Enc(m, pk; r) then output ⊥.
(g) Otherwise output k = KDF (α).

Theorem 3. Suppose there exists an attacker A against the tag-RKEM in the
random oracle model that makes at most qD decapsulation oracle queries, qK
queries to the KDF -oracle, qH queries to the H-oracle, and breaks the IND-CCA
security with advantage AdvIND−CCA

TKEM . Then there exists an attacker B against
the POW-CPA security of the public key encryption scheme (with respect to the
length TKEM .keylen) with advantage

AdvPOW−CPA
PKE ≥ 1

qD + qK + qH

{
AdvIND−CCA

TKEM − qD/2TKEM .keylen − qDγ
}

Corollary 1. If TKEM .keylen grows super-poly-logarithmically, γ is negligible
and (PKE .Gen,PKE .Enc,PKE .Dec) is partially one-way with respect to the
length TKEM .keylen, then the tag-KEM construction is secure.

If we instantiate this construction using the RSA-OAEP encryption scheme
and a passively secure DEM, then the result construction will encrypt a message
of length n using n + 4κ + 2 bits. This saves κ + 1 more bits than the RKEM
construction given in Section 3.

5 Acknowledgements

This work was partially supported by the European Commission through the
IST Programme under Contract IST-2002-507932 ECRYPT.

The problem of studying the efficiency and provable security of partial-
message-recovery systems was suggested to the authors by Daniel J. Bernstein.
Bernstein, who had incorporated a partial-message-recovery system (similar to
that of Shoup [16]) into the benchmarking tools for the eBATS project [8].

The authors would also like to thank Mihir Bellare for explaining some subtle
points related to the RSA-OAEP scheme and to James Birkett for reviewing a
draft of the paper.

References

1. A. Abe, R. Gennaro, K. Kurosawa, and V. Shoup. Tag-KEM/DEM: A new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In
Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 128–146, 2005.

2. M. Bellare. Personal correspondence, 2007.
3. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment

of symmetric encryption. In Proceedings of the 38th FOCS, pages 394–403. IEEE,
1997.

4. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In Advances in Cryptology
- ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages
531–545, 2000.

5. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

6. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in
Cryptology - CRYPTO ’94, volume 950 of Lecture Notes in Computer Science,
pages 92–111, 1995.

7. M. Bellare and P. Rogaway. The exact security of digital signatures — how to
sign with RSA and Rabin. In Advances in Cryptology - EUROCRYPT ’96, volume
1070 of Lecture Notes in Computer Science, pages 399–416, 1996.

8. D. J. Bernstein and T. Lange. eBATS (ECRYPT Benchmarking of Asymmetric
Systems), 2007. http://www.ecrypt.eu.org/ebats/.

9. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
In Advances in Cryptology - ASIACRYPT 2001, volume 2248 of Lecture Notes in
Computer Science, pages 514–532, 2001.

10. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2004.

11. A. W. Dent. A designer’s guide to KEMs. In 9th IMA International Conference
on Cryptography and Coding, volume 2898 of Lecture Notes in Computer Science,
pages 133–151, 2003.

12. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. Lecture Notes in Computer Science, 1666:537–554, 1999.

13. D. Hofheinz, J. Mueller-Quade, and R. Steinwandt. On modeling IND-CCA se-
curity in cryptographic protocols. Cryptology ePrint Archive, Report 2003/024,
2003. http://eprint.iacr.org/.

14. National Institute of Standards and Technology. Recommendation for key man-
agement - part 1: General. Technical Report NIST Special Publication 800-57,
National Institute of Standards and Technology, 2006.

15. L.A. Pintsov and S.A. Vanstone. Postal revenue collection in the digital age. In
Financial Cryptography 2001, volume 1962 of Lecture Notes in Computer Science,
pages 105–120, 2001.

16. V. Shoup. A proposal for an ISO standard for public key encryption. Cryptology
ePrint Archive, Report 2001/112, 2001. http://eprint.iacr.org/2001/112/.

17. V. Shoup. ISO/IEC FCD 18033-2 – Information technology – Security techniques
– Encryption algorithms – Part 2: Asymmetric ciphers. Technical report, Interna-
tional Organization for Standardization, 2004. http://shoup.net/iso/std6.pdf.

18. A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz. Energy analysis
of public-key cryptography for wireless sensor networks. In PERCOM ’05: Pro-
ceedings of the Third IEEE International Conference on Pervasive Computing and
Communications, pages 324–328, Washington, DC, USA, 2005. IEEE Computer
Society.

A KEM-DEM Framework

A.1 Definitions

Definition 13 (KEM). A key encapsulation mechanism is defined by KEM =
(KEM .Gen,KEM .Encap,KEM .Decap) as an ordered tuple of three algorithms.

1. A probabilistic key generation algorithm KEM .Gen. It takes as input a se-
curity parameter 1κ, and outputs a private/public keypair (sk, pk). As part
of the public key there is a parameter KEM .keylen that specifies the length
of the symmetric keys used by the DEM.

2. A probabilistic key encapsulation algorithm PKE .Encap. It takes as input a
public key pk, and outputs a symmetric key k of length KEM .keylen, and an
encapsulation ψ.

3. A deterministic decapsulation algorithm PKE .Decap. It takes as input a pri-
vate key sk and an encapsulation ψ and outputs either a key k or the unique
error symbol ⊥.

The KEM is sound if for almost all valid keypairs (sk, pk), whenever (k, ψ) was
the output of PKE .Encap(pk), we have k = PKE .Decap(sk, ψ).

Definition 14 (DEM). We define a data encapsulation mechanism DEM =
(DEM .Enc,DEM .Dec) as an ordered pair of algorithms.

1. A deterministic encryption algorithm DEM .Enc. It takes as input a message
m and a symmetric key k of a specified length DEM .keylen, and outputs a
ciphertext χ.

2. A deterministic decryption algorithm DEM .Dec. It takes as input a cipher-
text χ and a symmetric key k of specified length, and outputs either a message
m or the unique error symbol ⊥.

The DEM is sound as long as m = DEM .Deck
(
DEM .Enck(m)

)
holds.

We assume that a DEM can take inputs of arbitrary length messages, thus the
fact that the DEM can take a message of arbitrary length implies that any
resulting hybrid encryption scheme can also take arbitrary length messages.

Definition 15 (KEM+DEM Construction). Given a KEM and a DEM,
where the keys output by the KEM are of correct length for use with the DEM,
i.e. DEM .keylen = KEM .keylen, we construct a hybrid PKE scheme as follows.

– The key generation algorithm PKE .Gen is implemented using KEM .Gen.
– The encryption algorithm PKE .Enc is implemented as follows.

1. Compute a key/encapsulation pair (k, ψ) = KEM .Encap(pk).
2. Encrypt the message to obtain a ciphertext χ = DEM .Enck(m).
3. Output the ciphertext c = (ψ, χ).

– The decryption algorithm PKE .Dec is implemented as follows.
1. Parse the ciphertext to obtain (ψ, χ) = c.
2. Compute the symmetric key k = KEM .Decap(sk, ψ).
3. If k = ⊥, return ⊥ and halt.
4. Decrypt the message m = DEM .Deck(χ).
5. If m = ⊥, return ⊥ and halt.
6. Output m.

The soundness of the KEM+DEM construction follows from the soundness of
the individual KEM and DEM. A hybrid PKE scheme created from an IND-CCA
secure KEM and an IND-CCA secure DEM is itself secure [10].

A.2 Security Models

For hybrid components such as KEMs and DEMs, we may adapt the indis-
tinguishability criterion for public key schemes for each. For a KEM, the fun-
damental requirement is to ensure that the adversary does not learn anything
about a key from its encapsulation. Indeed, given a key and an encapsulation
the adversary should not be able to tell whether a given key is the one contained
in an encapsulation. This is (slightly confusingly, since it is really a question of
whether the key presented is “real” or “random”) usually referred to as IND-CCA
security.

Definition 16 (IND-CCA Game for KEM). The IND-CCA game for a
given key encapsulation mechanism KEM is played between the challenger and
an adversary A = (A1,A2). For a specified security parameter 1κ, the game
proceeds as follows.

1. The challenger generates a private/public keypair (sk, pk) = KEM .Gen(1κ).
2. The adversary runs A1 on the input pk. During its execution, A1 may query

a decapsulation oracle OD that takes an encapsulation ψ as input, and out-
puts KEM .Decap(sk, ψ). The algorithm terminates by outputting some state
information s.

3. The challenger generates a real key and its encapsulation, by calling (k0, ψ
∗) =

KEM .Encap(pk), as well as a random key k1 drawn uniformly from the
keyspace of the KEM. It also picks a random bit b R← {0, 1}.

4. The adversary runs A2 on the input (kb, ψ∗, s). During its execution, A2

has access to the decapsulation oracle as before, but it may not ask for the
decapsulation of ψ∗. The algorithm terminates by outputting a guess b′ for
the value of b.

We say that A wins the IND-CCA game whenever b = b′. The advantage of A
is the probability

AdvIND−CCA
KEM (A) =

∣∣Pr[A wins]− 1/2
∣∣.

For DEMs, we give two security notions, the first of which is an adaption of
the above notion of IND-security with respect to the input message.

Definition 17 (IND-PA Game for DEM). The IND-PA game for a given
data encapsulation mechanism DEM is played between the challenger and an
adversary A = (A1,A2). For a specified security parameter 1κ, the game proceeds
as follows.

1. The challenger generates a random symmetric key k.
2. The adversary runs A1 on the input 1κ. The algorithm terminates by out-

putting two messages m0 and m1 of equal length, and some state information
s.

3. The challenger generates a random bit b R← {0, 1} and encrypts the plaintext
mb, by calling χ∗ = DEM .Enck(mb).

4. The adversary runs A2 on the input (χ∗, s). The algorithm terminates by
outputting a guess b′ for the value of b.

We say that A wins the IND-PA game whenever b = b′. The advantage of A is
the probability

AdvIND−PA
DEM (A) =

∣∣Pr[A wins]− 1/2
∣∣.

Note, that a stronger notion of security exists which is IND-CCA, in this notion
we give the adversary in both stages access to a decryption oracle with respect
to the challengers key, subject to the constraint that in the second stage the
adversary may not call the decryption oracle on the challenge ciphertext.

The other security notion we require is ciphertext integrity or INT-CTXT.
This was first defined in [4], however we will only require a one-time security
notion.

Definition 18 (INT-CTXT Game for DEM). The INT-CTXT game for
a given data encapsulation mechanism DEM is played between the challenger
and an adversary A = (A1,A2). For a specified security parameter 1κ, the game
proceeds as follows.

1. The challenger generates a random symmetric key k.
2. The adversary runs A1 on the input 1κ. During its execution, A1 may query

a decryption oracle OD with respect to the key k; that takes a ciphertext χ as
input, and outputs DEM .Deck(χ). The algorithm terminates by outputting
a single messages m, and some state information s.

3. The challenger encrypts the plaintext m, by calling χ∗ = DEM .Enck(m).
4. The adversary runs A2 on the input (χ∗, s). As before the adversary has

access to it decryption oracle OD, however it may not call its oracle on the
target ciphertext χ∗. The algorithm terminates by outputting a ciphertext
χ′ 6= χ∗.

The adversary wins the game if it the ciphertext χ′ is a valid ciphertext, i.e. it can
be decrypted by the decryption algorithm. The advantage of A is the probability

AdvINT−CTXT
DEM (A) = Pr[A wins] .

It is proved in [4] that in the many-time setting, a scheme which is both IND-PA
and INT-CTXT will be IND-CCA as well. It is straightforward to verify that
this property also holds for one-time encryption schemes.

We note that a symmetric cipher which is IND-PA (such as a secure block
cipher in CBC mode with fixed IV) can be made INT-CTXT by adding a secure
Message Authentication Code using the basic Encrypt-then-MAC construction.
This is also the“standard”way of producing an IND-CCA symmetric cipher [10].

B Proof of Theorem 3

In this section we prove the the tag-RKEM construction given in Section 4.3 is
secure. In other words, we prove the following theorem:

Theorem 3. Suppose there exists an attacker A against the tag-RKEM in the
random oracle model that makes at most qD decapsulation oracle queries, qK
queries to the KDF -oracle, qH queries to the H-oracle, and breaks the IND-CCA
security with advantage AdvIND−CCA

TKEM . Then there exists an attacker B against
the POW-CPA security of the public key encryption scheme (with respect to the
length TKEM .keylen) with advantage

AdvPOW−CPA
PKE ≥ 1

qD + qK + qH

{
AdvIND−CCA

TKEM − qD/2TKEM .keylen − qDγ
}

Proof. The proof is very similar to the construction of Dent [11]. We model both
the hash function H and the key derivation function KDF as random oracles.
The tag-RKEM attacker can then gain no advantage in determining whether the
challenge key k∗ is correct key or not unless the attacker queries the KDF oracle
on the challenge seed value α∗. This can be done either implicitly (by making a
valid decapsulation oracle query that uses the value α∗ as its seed) or explicitly by
querying the KDF -oracle directly. We show that it is computationally infeasible
for the attacker to make a valid decapsulation oracle query using the seed α∗

without querying the H-oracle on some message α∗||τ . Hence, the only way that
the attacker can gain a non-negligible advantage is to query one of the random
oracles with a value involving α∗. We can therefore recover α∗, and solve the
POW-CPA problem by guessing which oracle query contains α∗.

We use non-programmable random oracles. These random oracles are simu-
lated using two lists KDFList and HList. In both cases, when a query is made
to the random oracle on an input x, then oracle searches the relevant list for a
record (x, y). If such a record exists, then the oracle outputs y; otherwise, the
oracle generates a random value y of the appropriate size, adds (x, y) to the
appropriate list, and outputs y.

Again, we use a game-hopping proof. Let Ti be the event that the tag-RKEM
attacker wins in Game i. Let Game 0 be the normal IND-CCA attack game for
A. Hence,

AdvIND−CCA
TKEM = |Pr[T0]− 1/2| .

Let Game 1 be identical to Game 0 except that the attacker is immediately
deemed to have lost the game if, on conclusion of the game, it turns out that A
queried the decapsulation oracle on the challenge ciphertext ψ∗ before the chal-
lenge ciphertext was issued. (We are forced to do this as the simulated decapsu-
lation oracle that we will define would incorrectly decapsulate this ciphertext as
⊥). Let E1 be the event that A1 submits ψ∗ to the decapsulation oracle. Since
A1 has no information about ψ∗ at this point, this would require A1 to guess
the value of ψ∗, which implicitly means that A1 has guessed the value of α∗ as
ψ∗ uniquely defines the value of α∗. Hence, Pr[E1] ≤ qD/2TKEM .keylen and we
obtain the following relation:

|Pr[T0]− Pr[T1]| ≤ Pr[E1] ≤ qD/2TKEM .keylen .

Game 2 will be identical to Game 1 except that we change the decapsulation
oracle to the following simulated decapsulation oracle:

1. The oracle takes as input an encapsulation ψ and a tag τ . It parses τ as
τ (0)||τ (1).

2. The oracle searches HList for an entry with input values (α, τ) and output
value r such that ψ = PKE .Enc(α||τ (0), pk; r).

3. If such a record exists, then the oracle outputs KDF (r); otherwise, it output
⊥.

Game 2 functions identically to Game 1 unless the attacker makes a decapsu-
lation oracle query which is valid in Game 1 but declared invalid in Game 2.
Let E2 be the event that this occurs. The only way that E2 can occur is if A
submits a ciphertext ψ and tag τ for decapsulation such that H(α, τ) = r and
ψ = PKE .Enc(α||τ (0), pk; r) but A has not submitted α||τ to the H-oracle. This
means that, in the view of the attacker, the value r is completely random. Hence,
the probability that ψ is an encryption of α||τ (0) is bounded by γ and we obtain
the following relation:

|Pr[T1]− Pr[T2]| ≤ qDγ .

We may now construct an attacker B = (B1,B2) against the POW-CPA
property of the encryption scheme and relate B’s success probability to A’s
advantage in Game 2. B1 takes pk as input and runs as follows:

1. Run A1 on the input pk. Simulates the oracles to which A has access as in
Game 2. A1 terminates by outputting some state information s1.

2. Generates a random key k∗.
3. Run A2 on the input (k∗, s1). Simulate the oracles to which A has access as

in Game 2. A2 terminates by outputting some state information s2 and a
tag τ∗.

4. Parse τ∗ as τ∗(0)||τ∗(1).
5. Output the tag τ∗(0).

The challenger will now pick a random seed α∗ and form the challenge ciphertext
ψ∗ by encrypting α∗||τ∗(0). B2 takes ψ∗ as input and runs as follows:

1. If A1 or A2 made a decapsulation oracle query on the value ψ∗, then output
⊥ and halt.

2. Run A3 on the input ψ∗ and s2. Simulate the oracles to which A has access
as in Game 2. A3 terminates by outputting a bit b′.

3. Randomly choose an entry from the total number of records in KDFList
and HList, and extract the value α from this query. Output α as the guess
for α∗.

B completely simulates the oracles to which A has access up until the point that
A makes a KDF -oracle query on α∗ or an H-oracle query on α∗||τ . If A does
not make such a query, then its advantage is 0; hence, the probability that A
makes such a query is equal to A’s advantage in Game 2.

Therefore, the probability that B correctly solves the POW-CPA problem is
equal to the probability that A makes a KDF -oracle query on α∗ or an H-oracle
query on α∗||τ , and B correctly guesses a record that contains a reference to α∗.

Since there are at most qD + qK + qH records in KDFList and HList, this will
happen with probability at least 1/qD + qK + qH . Hence,

AdvPOW−CPA
PKE ≥ 1

qD + qK + qH
· |Pr[T2]− 1/2|

≥ 1
qD + qK + qH

{
AdvIND−CCA

TKEM − qD/2TKEM .keylen − qDγ
}

This proves the theorem. ut

