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Abstract. We introduce a new simplified notion of plaintext awareness,
which we term PA2I, and show that this is equivalent to the standard
definition of PA2 plaintext awareness for encryption schemes that satisfy
certain weak security and randomness requirements. We also show that
PA2 plaintext awareness is equivalent to PA2+ plaintext awareness under
similar security and randomness requirements. This proves a conjecture
of Dent that, for suitably random public-key encryption schemes, PA2
plaintext awareness implies PA1+ plaintext awareness.

1 Introduction

Loosely speaking, a public-key encryption scheme is plaintext aware if it is im-
possible for any reasonable attacker to create a ciphertext without knowing the
underlying message. This is an interesting concept, but one that has proven dif-
ficult to formalise. The first formal notion of plaintext awareness was introduced
by Bellare and Rogaway [3] and later refined by Bellare et al. [1]. However, this
notion of plaintext awareness could only be achieved in the random oracle model.

Later, Bellare and Palacio [2] introduced a new definition for plaintext aware-
ness. This new notion could be achieved without recourse to the random oracle
methodology, yet was consistent with the earlier definitions in the sense that a
schemes proven secure under the earlier definition were also secure under the
new definition. These new definitions were slightly extended by Dent [4].

In the formal definition, for every ciphertext creator (algorithm) that can
output a ciphertext, there should exist a plaintext extractor (algorithm) that
can extract the underlying message given all of the inputs of the ciphertext
creator (i.e. the explicit inputs and the random coins that the ciphertext cre-
ator uses). This is meant to represent the idea that the plaintext extractor can
“observe” every action that the ciphertext creator makes when constructing the
ciphertext it finally outputs. The plaintext extractor should be able to extract
the underlying message of a ciphertext even if the ciphertext creator can query
an encryption oracle that provides the ciphertext creator with the encryption of
messages that have been drawn from some arbitrary and unknown (polynomial-
time) distribution. This is known as PA2 plaintext awareness.



We may also consider a weaker definition in which the ciphertext creator
does not have the ability to obtain ciphertexts from the encryption oracle. This
is known as PA1 plaintext awareness. Furthermore, the ciphertext creator may
also have access to a randomness oracle which returns random bits (PA1+/PA2+
plaintext awareness). This has the effect of making the actions of the ciphertext
creator unpredictable in advance. The complexity of these definitions, and the
difficulty in achieving the definition using standard computational assumptions,
are the two main barriers to the use of plaintext awareness in cryptography.

However, the concept of plaintext awareness has several uses. First, it can
be used to show that an encryption scheme is IND-CCA2 secure. It has been
proven that an encryption scheme that is PA2 plaintext aware and IND-CPA
secure is necessarily IND-CCA2 secure [2]. Second, there are some cryptographic
applications which require a scheme to be plaintext aware; for example, the
deniable authentication protocol of Di Raimondo, Gennaro and Krawczyk [6].
Lastly, the concept provides an insight into why some public-key encryption
schemes are secure, while others are not. We therefore believe that it is an
interesting and useful notion to study.

Our Contributions
We attempt to simplify the definition of plaintext awareness. In particular,

we introduce a new notion of plaintext awareness in which the ciphertext creator
cannot obtain the encryption of messages drawn from an arbitrary and unknown
distribution, but only the encryption of messages drawn from a simple, fixed
distribution. This distribution is defined by the plaintext creator PI which takes
two messages as input and chooses one of those messages at random. We term
this new notion of plaintext awareness PA2I as this is precisely the distribution
of messages that one considers when proving IND security.

We show that for encryption schemes meeting certain weak security and ran-
domness requirements (IND-CPA security, OW-CPA security and γ-uniformity)
the notions of PA2, PA2I and PA2+ plaintext awareness are equivalent. This
equivalence proves a conjecture of Dent [4] that a suitably random PA2 plaintext
aware encryption scheme is necessarily PA1+ plaintext aware. As a by-product
of these theorems, we also show that an encryption scheme that is IND-CPA
and PA2 plaintext aware must satisfy the stronger property that an adversary
cannot distinguish between encryptions of messages of different lengths, a prop-
erty not required by the standard definition of indistinguishability. In particular,
this implies that the scheme has a finite message space. Finally, we show that
PA2I plaintext awareness is not equivalent to PA2 plaintext awareness if the
encryption scheme is only OW-CPA secure and γ-uniform.

2 Definitions

2.1 Notation

We will use the following notation in this paper. If S is a set, then x
R← S means

x is sampled uniformly at random from the set S. If S is a distribution, then



x
R← S means that x is sampled according to the distribution. For a deterministic

algorithm A, we write x ← AO(y, z) to mean that x is assigned the output of
running A on inputs y and z, with access to oracle O. If A is a probabilistic
algorithm, we may write x ← AO(y, z;R) to mean the output of A when run on
inputs y and z with oracle access to O and using the random coins R. If we do
not specify R then we implicitly assume that the coins are selected uniformly
at random from {0, 1}∞. This is denoted x

R← AO(y, z). We let R[A] denote the
coins of an algorithm A.

2.2 Public-Key Encryption Schemes

An encryption scheme is a triple (G, E ,D) of probabilistic polynomial-time al-
gorithms. The algorithm G(1λ) outputs a key pair (pk, sk). The public key pk
implicitly defines a message space M and a ciphertext space C. The encryption
algorithm takes as input a public key pk and a message m ∈M, and outputs a
ciphertext C ∈ C. The decryption algorithm takes as input a private key sk and
a ciphertext C ∈ C, and outputs either a message m ∈M or the unique ‘reject’
symbol ⊥. We require that if (pk, sk) R← G(1λ), then for all m ∈M

Pr[D(sk, E(pk,m)) = m] = 1 .

where the probability is taken over the random coins of the encryption algorithm.
We will refer to a public-key encryption scheme as having either a finite or

infinite message space. A public-key encryption scheme Π has an infinite message
space if M is an infinite set for all values of the security parameter λ. Π has a
finite message space if M is a finite set for all values of the security parameter
λ. For simplicity, we will assume that all public-key encryption schemes either
have the infinite message space M = {0, 1}∗ (as with most hybrid encryption
schemes) or the finite message space M = {0, 1}`(λ). We will assume that all
encryption schemes run in time that is polynomially bounded in the size of their
inputs (i.e. λ and |m|).

Note that if `(λ) is polynomially bounded then we may equivalently define a
finite message space as M = {0, 1}<`, i.e. the set of all bit strings of length less
than `, as there is a trivial polynomial-time map from {0, 1}<` into {0, 1}`.

2.3 Indistinguishability Of Ciphertexts

We first describe the IND-ATK (where ATK is either CPA or CCA2) game for
an adversary A = (A1,A2), where A1 and A2 are probabilistic polynomial-time
algorithms:

(pk, sk) R← G(1λ)
(m0, m1, state) R← AO1 (pk)
b

R← {0, 1}
C∗ R← E(pk, mb)
b′ R← AO2 (C∗, state)



In the above, A1 outputs two messages (m0, m1) such that |m0| = |m1| and
some state information. The challenger chooses a bit b at random and encrypts
mb to give a challenge ciphertext C∗. A2 takes C∗ and the state information as
input and outputs a guess for b. We define the advantage of A as

AdvIND-ATK
A = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| .

We consider two attack models. In the chosen plaintext attack (CPA) model,
A does not have access to any oracles. In the adaptive chosen ciphertext attack
(CCA2) model, A may query a decryption oracle D, which takes a ciphertext C
as input and returns D(sk, C). The only restriction is that A2 may not query
the decryption oracle on C∗.

Definition 1 (IND-ATK). A public key encryption scheme Π = (G, E ,D) is
IND-ATK secure if for any probabilistic, polynomial-time IND-ATK adversary
A, the advantage AdvIND-ATK

A is negligible as a function of λ.

Frequently, where it will not cause undue confusion, we will suppress the state
information state and simply assume that all necessary information is passed
from A1 to A2.

2.4 One-Wayness

We also require a notion of one-wayness (OW-CPA) for an encryption scheme
with an infinite message space. For simplicity we assume that M = {0, 1}∗.
One-wayness is assessed via the following game:

(pk, sk) R← G(1λ)
m

R← {0, 1}λ

C∗ R← E(pk, m)
m′ R← A(pk,C∗)

We define the attacker A’s success probability to be Pr[m′ = m].

Definition 2 (OW-CPA). A public key encryption scheme Π = (G, E ,D) is
OW-CPA secure if for any probabilistic polynomial-time OW-CPA adversary A,
the success probability of A is negligible as a function of λ.

2.5 Plaintext Awareness

The formal definition of plaintext awareness in the standard model was proposed
by Bellare and Palacio [2]. A scheme is plaintext aware if for every probabilis-
tic polynomial-time algorithm (ciphertext creator) A there exists a probabilistic
polynomial-time algorithm (plaintext extractor) A∗ which can simulate a de-
cryption oracle for A when given the random coins that A uses (in the sense
that the output of A when interacting with A∗ is computationally indistinguish-
able from the output of A when interacting with a real decryption oracle). In



order to model the attacker’s ability to obtain ciphertexts for which it does not
know the underlying decryption, the ciphertext creator is equipped with an or-
acle that will return the encryption of a randomly chosen message m

R← P(s)
where P is an arbitrary probabilistic polynomial-time algorithm (plaintext cre-
ator) and s is supplied by the ciphertext creator A. Note that both P and A∗
are considered to be stateful algorithms.

Formally, we consider two games. In both cases, the ciphertext creator A is
given a public key pk from a correctly generated public-key pair (pk, sk) R← G(1λ)
and outputs a bitsting x. In both cases, the ciphertext creator has access to an
“encryption oracle” that will, on input s, generate a message m

R← P(s), compute
C

R← E(pk, m), add C to a list of returned ciphertexts Clist and return C to the
ciphertext creator. The games are distinguished by the “decryption oracle” to
which A has access. In the Real game, A can query a decryption oracle on any
ciphertext C /∈ Clist and the oracle will return D(sk, C). In the Fake game, A
can query a decryption oracle on any ciphertext C /∈ Clist and the oracle will
execute A∗(pk, C,R[A],Clist) and return the result. We stress again that A∗
and P are stateful algorithms. We can summarise these two games as follows:

Real game:
(pk, sk) R← G(1λ)
xReal

R← AD(sk, · ),E(pk,P( · ))(pk)

Fake game:
(pk, sk) R← G(1λ)
xFake

R← AA∗(pk, · ,R[A],Clist),E(pk,P( · ))(pk)

Definition 3 (PA2). A public key encryption scheme Π = (G, E ,D) is PA2
plaintext aware if for all polynomial-time ciphertext creators A, there exists a
polynomial-time plaintext extractor A∗ such that for all polynomial-time plaintext
creators P and polynomial-time distinguishing algorithms D, the advantage

AdvPA2

A,A∗,P,D = |Pr[D(xReal) = 1]− Pr[D(xFake) = 1]|
is negligible as a function of the security parameter (where xReal is the output of
A in the Real game and xFake is the output of A in the Fake game).

Definition 4 (PA1). A public key encryption scheme Π = (G, E ,D) is PA1
plaintext aware if it is PA2 plaintext aware for all ciphertext creators A that
do not make any queries to the encryption oracle. In other words, Π is PA1
plaintext aware if for all polynomial-time ciphertext creators A, there exists a
polynomial-time plaintext extractor A∗ such that for all polynomial-time distin-
guishing algorithms D, the advantage

AdvPA1

A,A∗,D = |Pr[D(xReal) = 1]− Pr[D(xFake) = 1]|
is negligible as a function of the security parameter.

Dent [4] extended these definitions to allow the ciphertext creator A to take
actions that are unpredictable to the plaintext extractor A∗ in advance by allow-
ing the ciphertext creator A to repeatedly query a “randomness oracle” which
returns a single random bit.



Definition 5 (PA+). For any plaintext awareness definition PA (PA1, PA2I,
PA2), we define a new condition PA+ (PA1+, PA2I+, PA2+) by adding a
randomness oracle, which takes no input and returns a random bit. The plaintext
extractor is altered so that it takes a list Rlist of all such bits queried so far as
one of its inputs, i.e. A∗(pk, C,R[A],Rlist,Clist).

Note that any such PA+ definition implies the corresponding PA definition,
since an adversary may simply not use the randomness oracle.

Bellare and Palacio proved that [2] any scheme that was PA2 plaintext aware
and IND-CPA secure was IND-CCA2 secure. The proof of this fact makes use
of a particular plaintext creator PI which takes as input two messages (m0,m1)
and outputs a randomly chosen message mb. We call this the IND plaintext
creator and define a scheme to be PA2I plaintext aware if it is PA2 plaintext
aware for the IND plaintext creator.

Definition 6 (PA2I). A public key encryption scheme Π = (G, E ,D) is PA2I
plaintext aware if for all polynomial-time ciphertext creators A, there exists a
polynomial-time plaintext extractor A∗ such that for all polynomial-time distin-
guishing algorithms D, the advantage

AdvPA2I

A,A∗,D = AdvPA2

A,A∗,PI ,D

is negligible as a function of the security parameter.

The paper of Bellare and Palacio [2] actually proves that a scheme which is
PA2I plaintext aware and IND-CPA secure is IND-CCA2 secure. We note that a
theorem of Teranishi and Ogata [8] shows that any scheme which is one-way and
PA2 plaintext aware is IND-CCA2 secure. We stress that the proof of Teranishi
and Ogata requires the use of the arbitrary plaintext creator P provided by the
full definition of PA2 plaintext awareness.

3 Theoretical Results About Plaintext Awareness

3.1 Connection Between PA2I And PA2

One of the more complex aspects of plaintext awareness is the fact that the
encryption oracle returns an encryption of a message that has been chosen from
some arbitrary distribution defined by P. The order of the quantifiers in the
definition of PA2 plaintext awareness means that neither the ciphertext creator
A, nor the plaintext extractor A∗, know the distribution from which messages
are chosen, although the ciphertext creator does have the ability to affect this
distribution via its input s to the encryption oracle. In this section, we show that
for IND-CPA encryption schemes it is sufficient to consider the fixed plaintext
creator PI . We note that PA2 plaintext awareness trivially implies PA2I plaintext
awareness, so we will concentrate on proving the converse theorem.

Theorem 1. If an encryption scheme with the finite message spaceM = {0, 1}`(λ)

is IND-CPA secure and PA2I plaintext aware, and `(λ) is polynomially bounded
in λ, then it is PA2.



Note that we could have equivalently chosen the message space to be {0, 1}<`,
i.e. the set of bitstrings of length less than `, as we can trivially map one set
onto the other. Note also that ` may depend on the security parameter λ but
for each value of λ we have that `(λ) is finite.

Proof. Consider an arbitrary plaintext creator P. We prove that the output of
A interacting with P is computationally indistinguishable from the output of A
interacting with PI and therefore, if there exists a plaintext extractor A∗ for the
ciphertext creator A in the PA2I model, then A∗ is also a plaintext extractor for
the ciphertext creator A in the PA2 model. We prove this through a sequence of
four games. Let xi be the output of A in Game i. Fix a distinguishing algorithm
D and let Si be the event that D(xi) = 1.
Game 0: Let Game 0 be the Fake game with plaintext creator P. In other
words, the encryption oracle computes messages m

R← P(s) and returns C
R←

E(pk,m). The decryption oracle returns A∗(pk,C, R[A],Clist).
Game 1: We replace P with the PI . Since A expects to be interacting with
P, and will not explicitly format its queries as (m0,m1), we will define PI so
that it truncates or pads s with zeros to 2` bits if necessary, and then splits the
result into two ` bit messages, chooses one of them at random and returns it.
Since `(λ) is polynomially bounded, this action can be computed in polynomial
time. The oracle then encrypts this message, then returns the ciphertext to A
and adds it to Clist.

If |Pr[S1] − Pr[S0]| is non-negligible, then we can construct an adversary
B that breaks the IND-CPA security of the scheme. We use a simple hybrid
argument. Suppose A makes at most qe queries to the encryption oracle. B1

takes as input the public key pk and runs A and A∗ exactly as described in the
Game 0. B responds to the first qe−1 encryption oracle queries as in Game 0 (i.e.
by computing a message m

R← P(s) and returning C
R← E(pk,m)). For the qe-th

query to the encryption oracle, B1 generates both m0
R← P(s) and m1

R← PI(s)
and outputs (m0,m1) as the messages on which it wishes to be challenged.

The challenger will pick one of these messages and encrypt it, the result will
be returned to B2. B2 handles any decryption oracle queries by A in the same
way as before (i.e. by using A∗). Eventually A terminates and outputs a bitstring
x. B2 terminates by outputting the bit D(x).

Since Π is IND-CPA, B’s advantage is bounded by AdvIND-CPA
B . It is clear

that if the challenger chose to encrypt message m0, then A was playing Game
0. It also clear that if the challenger chose to encrypt message m1 then A was
playing a hybrid game in which the first qe−1 queries were answered as in Game
0 and the last query was answered as in Game 1. Hence, the probability that the
ciphertext creator A outputs a bitstring x such that D(x) = 1 can only change
by at most AdvIND-CPA

B if the final encryption is computed using PI rather than
P.

We now repeat this “trick” qe times, until all the encryption oracle queries
are handled as in Game 1. Hence,

|Pr[S1]− Pr[S0]| ≤ qeAdvIND-CPA
B .



Game 2: We replace A∗ with a real decryption oracle. By definition, we have
that

|Pr[S2]− Pr[S1]| ≤ AdvPA2I
A,A∗,D

Game 3: We replace PI by P. We can prove that |Pr[S3]−Pr[S2]| is negligible
by much the same argument as in Game 1, except that this time we construct
an IND-CCA2 adversary B, which uses its own decryption oracle to answer
decryption queries. We may assume that Π is IND-CCA2 secure as it is both
IND-CPA secure and PA2I plaintext aware. Hence, after qe rounds, we have that

|Pr[S3]− Pr[S2]| ≤ qeAdvIND-CCA
C

Note that Game 3 is identical to the Real game with plaintext creator P.
We can therefore conclude that

AdvPA2
A,A∗,P,D = |Pr[S0]− Pr[S3]|

≤ qeAdvIND-CPA
B + AdvPA2I

A,A∗,D + qeAdvIND-CCA
B

Since the scheme is PA2I and IND-CPA, we see that

AdvIND-CCA
B ≤ AdvIND-CPA

C + qdAdvPA2I
F,F∗,D′

for some probabilistic polynomial time algorithms C,F ,F∗ and D′. Thus

AdvPA2
A,A∗,P,D ≤ qeAdvIND-CPA

B + AdvPA2I
A,A∗,D + qe(AdvIND-CPA

C + qdAdvPA2I
F,F∗,D′)

which is negligible as required. ut
Corollary 1. If an encryption scheme Π is IND-CPA secure and PA2I+ plain-
text aware then it is PA2+ plaintext aware.

Proof. The proof of this theorem mirrors the proof of Theorem 1. ut
The fact that we may be substitute an arbitrary plaintext creator P with the

specific plaintext creator PI will be crucial in proving the relationship between
PA2 and PA2+ in Section 3.3.

For schemes that have already been shown to be IND-CCA2 secure, but about
which their plaintext awareness may be in doubt, we can prove a stronger result.
Let Pm be the plaintext creator that constantly outputs the message m ∈M.

Corollary 2. If an encryption scheme Π is IND-CCA2 secure and PA2 (resp.
PA2+) plaintext aware with respect to the specific plaintext creator Pm, then it
is PA2 (resp. PA2+) plaintext aware.

Proof. The proof of this theorem mirrors the proof of Theorem 1 except we
explicitly use the fact that Π is IND-CCA2 secure in the third game hop, rather
than deriving the fact that Π is IND-CCA2 secure from the fact that it is IND-
CPA secure and PA2I plaintext aware. ut

This corollary may have some applications in situations where public key
encryption schemes are known to be IND-CCA2 secure, but need to be shown
to be PA2 plaintext aware in order that they might be used in some specific
protocol, e.g. the deniable authentication protocol of Di Raimondo, Gennaro
and Krawczyk [6].



3.2 PA2 and One-Wayness Implies a Finite Message Space

In the previous section, we introduced an extra condition into our proof – we
required the encryption scheme to have a finite message space. This may seem
like an unreasonable restriction. Far from being unreasonable, particularly when
one considers hybrid encryption schemes; however, we will show in this section
that a finite message space is necessary in order for a one-way scheme to achieve
PA2 plaintext awareness. Hence, we can conclude that many hybrid encryption
schemes, are unable to achieve this level of security, at least if we define the
message space to be {0, 1}∗, the set of all bitstrings. Our proof will not preclude
the possibility that a scheme is PA2I plaintext aware, OW-CPA secure and has
an infinite message space.

Theorem 2. Let Π = (G, E ,D) be an encryption scheme. If Π is PA2 and has
an infinite message space, then it is not OW-CPA.

In order to prove this theorem, we use the proof technique of Teranishi and
Ogata [8]. The technique involves using a specific plaintext creator P to leak
the value of a ciphertext C∗ to the ciphertext creator A bit-by-bit in such a
way that C∗ does not appear on Clist. The plaintext creator can then query
the decryption oracle on C∗ to obtain the underlying message (the validity of
which it can check using one further query to the plaintext creator). Now, since
this system allows the ciphertext creator to decrypt an arbitrary ciphertext by
interacting with only the polynomial-time plaintext extractor, the encryption
scheme cannot be one-way. Our proof differs from Teranishi and Ogata in that we
will leak the value of the challenge ciphertext C∗ by outputting short ciphertexts
if a bit of C∗ is zero and long ciphertexts if a bit of C∗ is one. We can produce
ciphertexts which are recognisably short or long due to the infinite size of the
message space.

Proof. We will prove that if Π = (G, E ,D) is PA2 and has an infinite message
space then Π is not OW-CPA secure. For simplicity, we assume M = {0, 1}∗.

Note that the length of any ciphertext must be bounded by a polynomial
f(λ, |m|) in the security parameter λ and length of the corresponding plaintext.
An upper bound for f is simply the running time of E . Let l0 = f(λ, λ) + λ + 1,
l1 = f(λ, l0) + λ + 1, and l2 = f(λ, l1) + λ + 1.

Let Encode be an algorithm which takes input i ∈ {0, 1, 2} outputs a message
m

R← {0, 1}li . Let Decode be an algorithm which takes a ciphertext C and returns

Decode(C) =





0 if f(λ, λ) < |C| ≤ f(λ, l0)
1 if f(λ, l0) < |C| ≤ f(λ, l1)
2 if f(λ, l1) < |C| ≤ f(λ, l2)
⊥ otherwise

If C
R← E(pk,Encode(0)), then we would like Decode(C) = 0. However, since we

only know that |C| ≤ f(λ, l0), it is possible that |C| ≤ f(λ, λ) and so the decode
algorithm will fail. But, since there exists only 2f(λ,λ)+1−1 ciphertexts of length



at most f(λ, λ) and 2l0−1 messages of length l0, the probability that a randomly
chosen message will encrypt to give a ciphertext of length less than or equal to
f(λ, λ) is bounded by 2−λ. Similarly, the probability that Decode(C) 6= i when
C

R← E(pk, Encode(i)) for i ∈ {1, 2} is bounded by 2−λ.
Next we construct a ciphertext creator A and a specific plaintext creator P.

The plaintext creator P works in a series of phases:

1. The first time the plaintext creator is initialised it picks a random message
m∗ R← {0, 1}λ and computes C∗ R← E(pk,m).

2. For the i-th query, where 1 ≤ i ≤ |C∗|, the plaintext creator returns
Encode(bi), where bi is the i-th bit of C∗. Hence, the ciphertext creator
will receive E(pk, Encode(bi). This leaks the value of the ciphertext C∗ to
the ciphertext creator.

3. For the next query the plaintext creator returns Encode(2). This signifies the
end of the ciphertext.

4. For the next query the plaintext creator uses the input s provided by the
ciphertext creator. If s = m∗ then the ciphertext creator returns Encode(1);
otherwise it returns Encode(0). This is a validity check.

5. For all subsequent queries the plaintext creator outputs 0.

The ciphertext creator A works as follows:

1. The ciphertext creator queries the plaintext creator repeatedly, each time
receiving a ciphertext C and computing the bit b ← Decode(C). If b ∈ {0, 1}
then the ciphertext creator stores this bit and repeats the query. If b = 2
then the ciphertext creator continues to the next phase.

2. The ciphertext creator reconstructs the ciphertext C∗ from the bits recovered
in the first phase.

3. The ciphertext creator submits the ciphertext C∗ to the decryption oracle
and receives a message m.

4. Next, the ciphertext creator submits m to the encryption oracle and receives
back a ciphertext C.

5. The ciphertext creator outputs the bit Decode(C)

Let Sreal be the event that A returns 1 in the Real game, and Sfake be the
event that A returns 1 in the Fake game. We note that if the decode algorithm
always returned the correctly encoded bit, then C∗ /∈ Clist as every ciphertext
C that the encryption oracle returns is of size greater than f(λ, λ). Furthermore,
if the decode algorithm always returned the correctly encoded bit, the A will
always return 1 in the Real game. Hence,

Pr[Sreal] ≥ 1− (|C∗|+ 2) · 2−λ .

Since, Π is PA2 plaintext aware, there exists a plaintext extractor A∗ for the
ciphertext creator A with the property that

Pr[Sfake] ≥ 1− (|C∗|+ 2) · 2−λ −AdvPA2
A,A∗,P,D



where D is the trivial distinguishing algorithm that outputs the single bit which
it takes as input. Due to the validity check, this means that A∗ must return the
correct decryption of C∗ with probability Pr[Sfake].

We use the functionality of A and A∗ to create an adversary B against the
OW-CPA security of Π as follows:

1. B receives a ciphertext C∗ and sets n to be |C∗|.
2. B generates a simulation of Clist ← {C0, C1, . . . , Cn+1} in which Ci

R←
E(pk, Encode(bi)), for 1 ≤ i ≤ n and where bi is the i-th bit of C∗, and
Cn+1

R← E(pk,Encode(2)).
3. B generates a suitably large random tape R[A]. The useable tape length can

be polynomially bounded by the runtime of A∗; hence, the construction of
such a tape is polynomial time.

4. B computes m
R← A∗(pk,C∗, R[A],Clist) and returns m.

Since B exactly simulates the environment in whichA∗ runs, B correctly decrypts
C∗ with probability Pr[Sfake] ≥ 1 − (|C∗| + 2) · 2−λ − AdvPA2

A,A∗,P,D which is
non-negligible as required. ut

This proof actually shows that any PA2 plaintext-aware encryption scheme
which a message space M = {0, 1}<`(λ) cannot be OW-CPA if `(λ) grows faster
than any polynomial. This is because we only require that the message space be
able to cope with messages up to length l2(λ) for the proof to work.

We may also conclude that any public-key encryption scheme Π which is
IND-CPA secure, PA2I plaintext aware and has an infinite message space cannot
be PA2 plaintext aware (as in such a case IND-CPA security implies OW-CPA
security and this contradicts the previous theorem). Hence, the condition that
the message space be finite in Theorem 1 is necessary.

3.3 Connection Between PA2 And PA2+

Clearly, a scheme which is PA2+ must necessarily be PA2, since an adversary
may simply not use its randomness oracle, but the converse is not obviously true.
We now show that it is true for a sufficiently randomised encryption scheme,
since an adversary may use randomness inherent in a ciphertext generated by
the encryption oracle to simulate a randomness oracle. This in turn implies that
a suitably random PA2 encryption scheme is PA1+, thus giving a formal proof
to the conjecture of Dent [4].

The proof essentially involves constructing a randomness oracle by taking ci-
phertexts created by a γ-uniform encryption algorithm and hashing them onto a
single bit using a randomly chosen universal2 hash function. The resulting distri-
bution on {0, 1} is only a small statistical distance from the uniform distribution
on {0, 1} and the result follows from the Leftover Hash Lemma [5]. One subtlety
of the proof is that we will require the ciphertext creator A∗ that we construct
to know the functionality of the plaintext creator P. Hence, we actually prove
that a suitably random PA2I plaintext aware encryption scheme is PA2I+, and
appeal to Theorem 1 to finish the proof.



Definition 7 (γ-Uniformity). An encryption scheme is γ-uniform if for all
public keys pk, messages m and ciphertexts C, Pr[E(pk,m) = C] ≤ γ, where
the probability is taken over the choice of random coins used by the encryption
algorithm.

Definition 8 (Universal2 Hash Family). A family H = (H, K, A,B) of func-
tions (Hk)k∈K where each Hk maps A to B is universal2 if for all x 6= y in A,
Pr[Hk(x) = Hk(y)|k R← K] ≤ 1/|B|.

We will use a universal2 function family H = (Hk)k∈K where Hk is a function
from {0, 1}∗ → {0, 1} for all k ∈ K. For simplicity, we will assume K = {0, 1}n.
Such families are known to exist without any computational assumptions [9].

Definition 9 (Statistical Distance). Let x and y be random variables taking
values on a finite set S. We define the statistical distance between x and y as

∆[x, y] =
1
2

∑

s∈S

|Pr[x = s]− Pr[y = s]| .

Note that if A is a predicate on the set S, then the following inequalities holds:

∆[x, y] ≥ |Pr[A(x)]− Pr[A(y)]| (1)

We give the version of Leftover Hash Lemma given in Theorem 6.21 of [7].

Lemma 1 (Leftover Hash Lemma). Let H be a family of universal2 hash
functions from A to B where B is of size β. Let V denote any distribution on
A which is independent of the choice of k. Let Û and V̂ denote the distributions
given by

Û = {(k, y) : k
R← K, y

R← B} V̂ = {(k, y) : k
R← K, x

R← V, y ← Hk(x)}

and let
κ =

∑

a∈A

Pr[V = a]2 .

Then ∆[Û , V̂ ] ≤ √
βκ/2.

This allows us to prove the following lemma.

Lemma 2. Let Π be a γ-uniform encryption scheme, then, for any fixed mes-
sage m ∈M and public key pk, we have

|Pr[Hk(E(pk,m)) = 1]− 1
2
| ≤

√
γ/2 ,

where the probability is taken over the choice of k
R← {0, 1}n and the random

coins used by the encryption algorithm.



Proof. Let V be the distribution of C
R← E(pk, m). By the γ-uniformity of Π we

have
max

v∈{0,1}∗
Pr[C = v] ≤ γ

So
κ(V ) ≤

∑

v∈{0,1}∗
Pr[C = v]γ = γ

∑

v∈{0,1}∗
Pr[C = v] = γ

and so by the Leftover Hash Lemma we have

∆[(k, Hk(C)), (k, y)] ≤
√

2γ/2 ,

where y
R← {0, 1}. However,

∆[(k, Hk(C)), (k, y)] ≥ |Pr[Hk(C) = 1]− 1/2|

which gives the required result. ut

Theorem 3. Suppose a public key encryption scheme Π is γ-uniform (for a
negligible value of γ) and PA2I plaintext aware. Then it is PA2I+ plaintext
aware.

Proof. Let H be as above. Let A be a PA2I+ ciphertext creator that makes
at most qr queries to the randomness oracle. We construct a PA2I ciphertext
creator B as follows: B takes input pk. We designate the first qr n-bit chunks of
the random tape of B as (k1, . . . , kqr ) and the rest R[A]. B runs A(pk; R[A]). B
answers A’s encryption and decryption queries by passing them to its own oracle
and returning the result. To answer the ith randomness query, it queries the
encryption oracle on the input 0 and receives a ciphertext C. It then computes
bi ← Hki(C) and returns bi.

Since B is a valid PA2I ciphertext creator, there exists a plaintext extractor
B∗. We use B∗ to construct a plaintext extractor A∗ for A.

Recall that A∗ takes input (pk,C, R[A],Rlist,Clist). We will assume that
when A∗ is first initialised it chooses hash keys (k1, . . . , kqr )

R← ({0, 1}n)qr and
stores these keys. If A∗ is queried with a ciphertext C, then it runs as follows:

1. If the randomness oracle has been queried since A∗ was last executed, i.e.
Rlist has grown, then for each new bit bi that has been returned A∗ gen-
erates a ciphertext Ci by running E(pk,PI(0)) repeatedly until it finds Ci

such that Hki(Ci) = bi, then adds Ci to Clist in the appropriate place. We
note that, by Lemma 2, the probability that Pr[Hki(C) 6= bi] ≤ 1

2 +
√

γ/2.
We limit A∗ to running λ trials; hence, A∗ will run in polynomial time, but
fail with the negligible probability ( 1

2 +
√

γ/2)λ.
2. A∗ then computes m

R← B∗(pk, C, R,Clist) where R = k1|| . . . ||kqr ||R[A].

We now show that A∗ is a valid plaintext extractor for A, i.e. the output
x

R← AO(pk) is computationally indistinguishable in the Real and Fake games.



Fix a distinguishing algorithm D, let xi be the output of A in Game i and let
Si be the event that D(xi) = 1.

Game 0: Let Game 0 be the Real game for A. In other words, the encryption
oracle takes as input s, computes m

R← PI(s) and returns C
R← E(pk, m). The

decryption oracle returns D(sk, C).

Game 1: We modify the randomness oracle so that on the ith query it com-
putes Ci

R← E(pk,PI(0)) and sets bi ← Hki
(Ci), where 1 ≤ i ≤ qr, rather than

simply returning a random bit. In order to prove that |Pr[S0] − Pr[S1]| is neg-
ligible, we use a hybrid argument. Suppose we consider changing the response
of the first query to the randomness oracle from the random bit b to the bit
b′ R← Hk1(E(pk,PI(0))) and let S∗ be the event that D(x) = 1 in this new game.
By Lemma 2 and Equation 1 we have that

|Pr[S0]− Pr[S∗]| ≤ ∆[(k1, b), (k1, b
′)] ≤

√
γ/2

We may repeat this argument for all qr randomness oracle queries to obtain

|Pr[S0]− Pr[S1]| ≤ qr

√
γ/2

Game 2: We modify the randomness oracle so that it adds each ciphertext
Ci

R← PI(0) it generates to Clist. Since the ciphertext creator A does not have
access to Clist and the ciphertext creator A has access to a real decryption
oracle, the view of A is identical in the two games unless it submits one of these
ciphertexts to the decryption oracle. The probability that a specific ciphertext
involved in a decryption oracle query matches a specific ciphertext created by
the randomness oracle is bounded by γ due to the γ-uniformity property. Since
A makes at most qr randomness oracle queries such ciphertexts and at most qd

decryption queries, we have

|Pr[S2]− Pr[S1]| ≤ qrqdγ

Game 3: We modify the decryption oracle so that it uses the plaintext ex-
tractor A∗ to answer decryption oracle queries. Game 3 exactly simulates the
environment of B∗ providing that the B∗ finds a suitable ciphertext Ci for each
random bit bi on Rlist, so if D is an arbitrary distinguishing algorithm for B,

|Pr[S3]− Pr[S2]| ≤ AdvPA2I
B,B∗,P,D + qr(

1
2

+
√

γ/2)λ

However, Game 3 is the Fake game for A, so

AdvPA2I+
A,A∗,P,D = |Pr[S3]− Pr[S0]|

≤ AdvPA2I
B,B∗,P,D + qrqeγ + qr

√
γ/2 + qr(

1
2

+
√

γ/2)λ .

which is negligible as required. ut



Corollary 3. Suppose a public key encryption scheme Π is PA2 plaintext aware,
OW-CPA secure, and γ-uniform. Then Π is PA2+ plaintext aware.

Proof. Since Π is PA2 plaintext aware and OW-CPA secure, we have that it is
PA2I plaintext aware, IND-CPA secure and that it has a finite message space
M = {0, 1}`(λ) where `(λ) is polynomially bounded (Theorem 2). Since Π is
PA2I plaintext aware and γ-uniform, we have that it is PA2I+ plaintext aware
(Theorem 3). Since Π has a finite message space and is both PA2I+ plaintext
aware and IND-CPA secure, we have that it is PA2+ plaintext aware (Corol-
lary 1). ut

3.4 PA2I+ And OW-CPA Do Not Guarantee IND-CPA Security

We have shown that for IND-CPA encryption schemes, the notions of PA2I plain-
text awareness and PA2 plaintext awareness are equivalent. It might be hoped
that this equivalence also holds for schemes with fewer security guarantees – in
particular, it might be hoped that one can find an analogue of the Teranishi and
Ogata theorem [8] which would prove that a scheme which was PA2I plaintext
aware and OW-CPA secure was IND-CCA2 secure.

In this section we give evidence that this is not the case by proving that there
exist schemes that are PA2I+ plaintext aware and OW-CPA secure, but which
are not IND-CPA secure. Alternatively, by Theorem 3, we have that there exists
a scheme which is PA2I plaintext aware, OW-CPA secure and γ-uniform, but
not IND-CPA secure. We leave the question of showing that there exists schemes
that are PA2I plaintext aware and OW-CPA secure, but not IND-CPA secure,
as an open problem.

Theorem 4. Suppose there exists a public key encryption encryption scheme
Π = (G, E ,D) which is OW-CPA, IND-CPA, and PA2I+. Then there exists
another encryption scheme Π ′ = (G, E ′,D′) which is OW-CPA and PA2I+ but
not IND-CPA.

Proof. We assume that the message space M for Π is such that it is easy to find
messages m0 and m1 which differ in the final bit and let F (m) denote the final
bit of message m. We now describe a new encryption scheme Π ′ = (G, E ′,D′) as
follows:

E ′(pk, m):
C ′ R← E(pk,m)
b ← F (m)
C ← (C ′, b)
Return C

D′(sk, C):
Parse C as (C ′, b)
m ← D(sk, C ′)
If b = F (m):

Return m
Else

Return ⊥

Clearly, Π ′ is OW-CPA, since if there is an adversary against the OW-CPA
security of Π ′ with advantage ε, there is an adversary against Π with advantage



ε/2 which just guesses the final bit at random. It is also clear that Π ′ is not
IND-CPA, since an adversary may simply choose two messages (m0,m1) that
differ in the final bit.

We now show that Π ′ is PA2I+. Let A be a PA2I+ ciphertext creator against
Π ′. We construct a PA2I+ ciphertext creator B against Π. B runs A(pk; R[B])
and handles queries as follows:

– If A makes an encryption oracle query on (m0,m1), B queries its own en-
cryption oracle on (m0,m1) and receives a ciphertext C ′. It then checks if
F (m0) = F (m1). If so, B then returns C = (C ′, F (m0)) to A. If not, B
queries its randomness oracle to get a bit b′, and returns C = (C ′, b′).

– If A makes a decryption query on C = (C ′, b′), B checks whether (C ′, b′⊕ 1)
is on Clist. If so, B returns ⊥ to A. Otherwise, B queries its own decryption
oracle on C ′ to get a message m, and returns m if F (m) = b′ or ⊥ otherwise.

Finally, when A outputs x and terminates, B does the same.
By the PA2I+ property of Π there exists a plaintext extractor B∗ for the

ciphertext creator B. We use B∗ to construct a plaintext extractor A∗ for the
ciphertext creator A. A∗ takes input (pk, C,R[A],Rlist,Clist) and runs as
follows:

1. When it is first initialised, A∗ creates two empty lists Rlist′ and Clist′

which will be used to simulate the inputs to the plaintext extractor B∗.
2. A∗ checks to see if the encryption oracle or decryption oracle has been used

since it was last activated. It does this by executing A on all the appropriate
inputs (using pk, R[A] and the values on Clist and Rlist).
– For each new bit b′ returned by the randomness oracle, A∗ appends b′

to Rlist′.
– For each new ciphertext (C ′, b′) returned by the encryption oracle, A∗

examines the two messages (m0,m1) that A submitted to the encryption
oracle (which A∗ knows because it has executed A). If F (m0) = F (m1),
then A∗ appends C ′ to Clist′. If F (m0) 6= F (m1), then A∗ appends b′

to Rlist′ and C ′ to Clist′.
3. If C ∈ Clist′ then A∗ returns ⊥.
4. Otherwise, A∗ computes m

R← B∗(pk, C,R[A],Rlist′,Clist′).
5. If F (m) = b′ then A∗ returns m; otherwise A∗ returns ⊥.

We must now show that A∗ is a valid plaintext extractor for A. We do this
by showing that A and A∗ almost perfectly simulates the output of B and B∗.
Fix a distinguishing algorithm D, let xi be the output of A in Game i and let
Si be the event that D(xi) = 1 in Game i.
Game 0: Let Game 0 be the Real game for A. In other words, the encryption
oracle takes as input two messages (m0, m1), chooses a bit b

R← {0, 1} and returns
(C ′, b′) R← E ′(pk, mb). The decryption oracle returns D′(sk, C).
Game 1: We let Game 1 be identical to Game 0 except that for each ciphertext
(C ′, b′) returned by the encryption oracle, the bit b′ is chosen in the same way
that B does – i.e. if F (m0) = F (m1) then the oracle chooses b′ = F (m0),



otherwise b′ is chosen uniformly at random {0, 1} independently of the message
that is encrypted.

Game 1 exactly simulates the Real game for B. We claim that

|Pr[S1]− Pr[S0]| ≤ qeAdvIND-CCA2
B′

for some IND-CCA2 adversary B′ against Π, since if the outputs of A are distin-
guishable in these two games, we can construct an adversary which distinguishes
ciphertexts. Note that we may assume Π is IND-CCA2 secure as it is IND-CPA
secure and PA2I+ plaintext aware.

Game 2: Let Game 2 be the same as Game 1, except that A’s D queries are
handled by A∗. We note that Game 2 exactly simulates the Fake game for B.
Thus by the PA2I+ property of Π,

|Pr[S2]− Pr[S1]| ≤ AdvPA2I+
B,B∗,D .

Game 3: Let Game 3 be as Game 2, except with the original behaviour of the
encryption oracle restored, i.e. the final bit of the ciphertext is the final bit of
the message. Hence,

|Pr[S3]− Pr[S2]| ≤ qeAdvIND-CPA
B′

for some IND-CPA adversary B′ for the same reasoning as in Game 1.
However, Game 3 is identical to the Fake game for A. Hence,

AdvPA2I+
A,A∗,D = |Pr[S0]− Pr[S3]|

≤ qeAdvIND-CCA
B′ + AdvPA2I+

B,B∗,D + qeAdvIND-CPA
B′

which is negligible as required. ut

4 Conclusion

In this paper we have discussed the relationship between several notions of com-
putational plaintext awareness, most notably the relationship between PA2 and
the newly introduced notion of PA2I. The relationships between PA2I and PA2
are summarised in the diagram below:

IND-CPA OW-CPA

PA2 •
1

•
2

PA2I •
1

3

•/



The downwards arrows in the diagram follow trivially, since PA2I is a weaker
notion than PA2. The arrows numbered 1 follow trivially if the message space is
super-polynomial sized in the security parameter, since in this case any scheme
which is IND-CPA is also OW-CPA. The arrow numbered 2 follows from the
result of Teranishi and Ogata [8]. The arrow numbered 3 is a result of Theorem 1
and the separation is a result of Theorem 4 (under the added assumption that the
encryption scheme is γ-uniform). Note that the diagram also demonstrates that
there exist schemes that are OW-CPA, γ-uniform and PA2I, but not PA2. We
believe that in almost all practical cases, the PA2I notion of plaintext awareness
suffices.

We also explored some of the properties of encryption schemes that are PA2
plaintext aware, γ-uniform, OW-CPA secure and IND-CPA secure. We demon-
strated that these schemes must have a finite message space and that they are
necessarily PA2+. This latter result proves the conjecture of Dent [4].
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