
The Physically Observable Security of Signature
Schemes

Alexander W. Dent1 and John Malone-Lee2

1 Information Security Group
Royal Holloway, University of London

Egham, Surrey, TW20 0EX, UK
a.dent@rhul.ac.uk

http://www.isg.rhul.ac.uk/~alex
2 Department of Computer Science

University of Bristol
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, UK
malone@cs.bris.ac.uk

http://www.cs.bris.ac.uk/~malone

Abstract. In recent years much research has been devoted to producing
formal models of security for cryptographic primitives and to designing
schemes that can be proved secure in such models. This line of research
typically assumes that an adversary is given black-box access to a cryp-
tographic mechanism that uses some secret key. One then proves that
this black-box access does not help the adversary to achieve its task.
An increasingly popular environment for cryptographic implementation
is the smart-card. In such an environment a de�nition of security that
provides an adversary with only black-box access to the cryptography
under attack may be unrealistic. This is illustrated by attacks such as
the power-analysis methods proposed by Kocher and others. In this pa-
per we attempt to formally de�ne a set of necessary conditions on an
implementation of a cryptosystem so that security against an adversary
with black-box access is preserved in a more hostile environment such as
the smart-card. Unlike the previous work in this area we concentrate on
high-level primitives. The particular example that we take is the digital
signature scheme.

1 Introduction

The idea of formally modelling cryptographic security originates in Probabilistic
Encryption [11], the seminal work of Goldwasser and Micali. Since the publi-
cation of that paper, a huge body of research has been devoted to designing
schemes that provably meet some de�nition of security. The basic tenet of all
this work is as follows. Start with an assumption about some atomic primitive
(for example, the assumption that a particular function is one-way); design a

2 Alexander W. Dent and John Malone-Lee

scheme in such a way that an adversary cannot break the scheme without vio-
lating the assumption about the atomic primitive. This property is demonstrated
using a complexity-theoretic reduction: one shows that, if an adversary of the
scheme exists, then this adversary could be used as a subroutine in an algorithm
to violate the assumption about the atomic primitive. Following this procedure
one concludes that, if the assumption about the atomic primitive is correct, the
scheme satis�es the chosen security de�nition.

Until recently, the idea of showing that the security of a cryptosystem relies
only on the properties of a set of critical atomic primitives has been applied
in a �black-box� manner. That is to say, an adversary is given black-box access
to an instance of the cryptosystem with a randomly generated secret key. It
may have complete control over all inputs, and see all outputs, but it has no
knowledge of the internal state of the black-box implementing the cryptosystem.
This approach has been used in both the symmetric-key [2] and asymmetric-
key [3] settings.

Such models may be appropriate for applications in which all potential adver-
saries are remote from the legitimate user; however, increasingly cryptography
is used in, for example, smart card applications where this is not the case. An
attack in this setting was discovered by Kocher et al. [14]. They showed how, by
monitoring the power consumption of a smart card running DES [9], the secret
key could be recovered. These attacks have since become known as side-channel
attacks; the side channel is the information leaked by the physical implementa-
tion of an algorithm � the power consumption in the example above.

There is no avoiding the fact that a physical device performing sensitive
operations may leak information. Countermeasures preventing speci�c attacks
can often be designed but they may be expensive. It is therefore imperative
that security models are developed that are capable of explicitly isolating the
security-critical operations in the implementation of a cryptosystem. This will
allow appropriate countermeasures to be focused exactly where they are neces-
sary.

Recently, the �rst steps have been taken towards formally de�ning security
models for environments where an adversary is able to mount side-channel at-
tacks. One such approach, proposed by Micali and Reyzin [15], is known as
physically observable cryptography. In this model, every cryptographic operation
gives o� physical observables. For example, these observables could be related to
the power consumption [14] or the electro-magnetic radiation emitted by a de-
vice during computation [1]. The model does not deal with attacks such as those
proposed in [5, 6] in which an adversary actively attempts to alter the operation
of a cryptosystem.

The original paper of Micali and Reyzin [15], very properly, concentrates on
physically observable cryptography on a �micro� scale: it examines the e�ect
that physical observables have on proofs of security for fundamental primitives
such as one-way functions and permutations. They left open the question of
how their model could be applied on a more �macro� scale, to primitives such as
encryption and signatures � for which there already exist schemes with black-box

The Physically Observable Security of Signature Schemes 3

security proofs. In this paper we start to address this question. More speci�cally,
we will describe how a set of necessary conditions can be established on the
implementations of components of certain cryptosystems so that a black-box
security proof holds in the setting where an adversary is given access to the
implementation of the cryptosystem.

2 Physically Observable Cryptography

In this section we begin by reviewing the model proposed by Micali and Reyzin [15].
Once we have done so we describe how to extend the model to deal with higher-
level primitives than those considered to-date.

2.1 Informal Axioms
The model of Micali and Reyzin [15] requires several �informal axioms�. These
axioms are assumed to apply to any computational device used to implement
the primitives under consideration. We state these axioms brie�y below and
elaborate on them where necessary. Further details may be found in [15].

Axiom 1 Computation, and only computation, leaks information. Hence, un-
accessed memory is totally secure.

Axiom 2 The same computation leaks di�erent information on di�erent de-
vices.

Axiom 3 Information leakage depends upon the chosen measurement.
Axiom 4 Information measurement is local: the information leaked by a com-

ponent function is independent of the computations made by any of the other
component functions.

Axiom 5 All leaked information is e�ciently computable from the device's in-
ternal con�guration. In particular, this means that the leakage is e�ciently
simulatable if you know all the inputs to a component function.

We note that these axioms cannot be applied indiscriminately to all devices
implementing cryptography. For example the cache-based cryptanalysis proposed
by Page [16] and developed by Tsunoo et al. [18] exploits certain implementations
of DES where Axiom 4 above fails to hold. In particular these attacks exploit
the fact that, when implemented on a piece of hardware with cache memory, the
time taken to access S-box data may vary according to previous S-box access.
This time-based side-channel can be exploited to recover the key.

2.2 Computational Model
In the traditional Turing machine (TM) model the tape of the machine is ac-
cessed sequentially. This is not consistent with Axiom 1 in Section 2.1: to move
from one cell to another the machine may need to scan many intermediate cells
thereby leaking information about data that is not involved directly in compu-
tation. To overcome this problem Micali and Reyzin augment the model with

4 Alexander W. Dent and John Malone-Lee

random access memory so that each bit can be addressed and accessed indepen-
dently of all other bits.

As we noted at the end of Section 2.1, Axiom 4 requires us to work in a
model where the leakage of a given device is independent of all the computa-
tion that precedes it. Micali and Reyzin point out that this means we cannot
work in a single TM model [15]. To provide modularity for physically observable
cryptography, the model of computation consists of multiple machines. These
machines may call one another as subroutines. A second requirement of the
model in order to preserve independence of leakage is that each machine has
its own memory space that only it can see. To implement this requirement the
model is augmented with a virtual memory manager.

We now proceed to formalise these concepts following the ideas of Micali and
Reyzin [15]. We comment on the di�erences between our version and the original
as and when they occur.

Abstract Virtual-Memory Computers An abstract virtual-memory com-
puter (abstract VMC or simply VMC for short) consists of a collection of special
Turing machines. We call these machines abstract virtual-memory Turing ma-
chines (abstract VTMs or simply VTMs for short). We write A = (T1, . . . , Tn)
to denote the fact that abstract virtual-memory computer A consists of abstract
VTMs T1, . . . , Tn, where T1 is distinguished: it is invoked �rst and its inputs and
outputs coincide with those of A.

The specialisation of this model that we will use will have the following
features. We will assume that T1 calls each of T2, . . . , Tn in turn; that none of
these is called more than once; and that Ti does not call Tj if i 6= 1. We will
demonstrate these properties with a concrete example in Section 3.2.

Virtual-Memory Management In addition to the standard input, output,
work and random tapes of a probabilistic TM, a VTM has random access to its
own virtual address space (VAS). There is in fact a single physical address space
(PAS) for the entire VMC. A virtual-memory manager takes care of mapping the
PAS to individual VASs. Complete details of how the virtual-memory manager
works may be found in [15]. We only mention here the properties that we require.

Each VTM has a special VAS-access tape. To obtain a value from its VAS
it simply writes the location of the data that it wishes to read on its VAS-
access tape. The required data then appears on the VTMs VAS-access tape.
The mechanics of writing to VAS are equally simple: a VTM simply writes the
data and the location that it wishes it to be stored at on its VAS-access tape.

The only special requirement that we have in this context is that the virtual-
memory manager should only remap memory addresses, but never access the
data.

Input and Output The implementations of the cryptosystems that we will
consider in this paper will have the following form. The only VTM that will take

The Physically Observable Security of Signature Schemes 5

any external input or produce any external output is T1. So, if A = (T1, . . . , Tn),
the external input and external output of A are exactly those of T1.

At the start of the computation the input is on the start of T1's VAS. At
the end of the computation the output occupies a portion of T1's VAS. Further
details of this may be found in [15].

Calling VTMs as Subroutines As we mentioned above, for the implementa-
tions of the cryptosystems that �t our version of the model, the only VTM that
will call any other VTM is T1. This VTM has a special subroutine-call tape. To
call a subroutine Ti, T1 speci�es where the input for Ti is located on its � T1s �
VAS. It also speci�es where it wants the output. The virtual memory manager
takes care of mapping address locations.

2.3 Physical Security Model

The physical implementation of a cryptosystem, itself modelled as a virtual-
memory computer T = (T1, . . . Tn), will be modelled as a physical virtual-memory
computer (physical VMC). This is a collection of physical virtual Turing machines
(physical VTMs) P = (P1, P2, . . . , Pn). Each physical VTM Pi consists of a pair
Pi = (Li, Ti) where Ti is a VTM and Li is a leakage function associated with
the physical implementation of Ti.

A leakage function is used to model the information leaked to an adversary by
a particular implementation. As de�ned by Micali and Reyzin [15], it has three
inputs: (1) the current con�guration of the physical VTM under consideration;
(2) the setting of the measuring apparatus used by the adversary; and (3) a
random string to model the randomness of the measurement. Further details
may be found in [15].

We say that an adversary observes a physical VTM if it has access to the
output of the leakage function for the VTM and can decide upon the second
input: the measuring apparatus to use. As in [15], we denote the event that an
adversary A outputs yA after being run on input xA and observing a physical
VTM Pi being executed on an input xP and producing an output yP , by

yP ← P(xP) Ã A(xA) → yA.

3 A De�nition of Security for Physical Virtual-Memory
Computers

Recall from Section 2.2 that we are interested in implementations of cryptosys-
tems with the following form. The cryptosystem must be susceptible to being
modelled as a VMC T = (T1, . . . , Tn) such that the input and output of T cor-
respond exactly to the input and output of T1, and T1 calls each Ti once and
once only. We will also require in our model that T1 is not responsible for any
computation itself. It simply maps addresses in its VAS to the VAS-access tapes

6 Alexander W. Dent and John Malone-Lee

of the VTMs T2, . . . , Tn. It therefore follows from Axiom 1 in Section 2.1 that
T1 does not leak any side-channel information to an adversary.

The �nal point that we should make about T1 is that it has the secret key
of the cryptosystem concerned hard-coded into its VAS before any adversary
is given access to the implementation. We will also assume that the secret key
for the cryptosystem is of the form sk = (sk2, . . . , skn) where the sk i is the
secret key material used by Ti. At present our model can only deal with the
case where the sk i are distinct and generated independently of one another by
the key generation algorithm for the scheme (modulo some common parameter
such as a group or the bit-length of an RSA modulus). A good example of a
cryptosystem with such a property is the CS1a scheme of Cramer and Shoup [8].
We will comment on why this property is necessary at the appropriate point in
our proof of security.

At this point we will provide an example to illustrate the concepts that we
are introducing. The example that we will use is a version of the PSS variant [4]
of the RSA signature scheme [17]. We also introduce this example because we
will prove our result speci�cally for the case of digital signature schemes.

Before going into details of the speci�c scheme we remind ourselves of the def-
inition of a signature scheme and the de�nition of security for signature schemes.

3.1 Signature Schemes and their Security
A signature scheme SIG consists of three algorithms KeyGen,Sig and Ver . These
have the following properties.

� The key generation algorithm KeyGen is a probabilistic algorithm that takes
as input a security parameter 1k and produces a public/secret key pair
(pk , sk).

� The signing algorithm Sig takes as input the secret key sk and a message
m; it outputs a signature s. The signing algorithm may be probabilistic or
deterministic.

� The veri�cation algorithm Ver takes as input a message m, the public key
pk and a purported signature s; it outputs 1 if s is a valid signature on m
under pk , otherwise it outputs 0.

Let us also recall the standard de�nition of (black-box) security for a signa-
ture scheme: existential unforgeability under adaptive chosen message attack [12].
This notion is described using the experiment below involving a signature scheme
SIG = (KeyGen,Sig ,Ver), an adversary A and a security parameter k.

Expeuacma
SIG,A (k)

Stage 1 The key generation algorithm KeyGen for the signature scheme in
question is run on input of a security parameter 1k. The resulting public key
is given to adversary A.

The Physically Observable Security of Signature Schemes 7

Stage 2 Adversary A makes a polynomial number (in the security parameter)
of queries to a signing oracle. This oracle produces signatures for A on mes-
sages of its choice. The oracle produces these signatures using the secret key
generated in Stage 1 and algorithm Sig .

Stage 3 Adversary A attempts to output a message and a valid signature such
that the message was never a query to the signing oracle in Stage 2. If it
succeeds in doing this we say that A wins and we output 1, otherwise we
output 0.

The adversary A's advantage is the probability that it wins in the above. We
say

Adveuacma
SIG,A (k) = Pr[Expeuacma

SIG,A (k) = 1] (1)

If, for all probabilistic polynomial time A, (1) is a negligible function k then SIG
is said to be existentially unforgeable under adaptive chosen message attack.

Having de�ned the black-box version of the de�nition of security for a signa-
ture scheme, it is a straightforward manner to de�ne the physically observable
analogue. To do this we simply replace the black-box queries that A has in
Stage 2 of the above de�nition with physically observable queries as de�ned in
Section 2.3. In other words, we give A access to an oracle for the leakage func-
tion of the system. The adversary supplies the measurement information that
is input to the leakage function, and the oracle uses the machines current state
and randomness as the other inputs. Note that this model reduces to the stan-
dard chosen message attack model if the measurement information consists of
a message, and the leakage function returns a randomly generated signature on
that message. We denote the experiment where A has access to a leakage oracle
Expeupoacma

T (SIG),A(k) and de�ne the advantage of an adversary A in this game by

Adveupoacma
T (SIG),A(k) = Pr[Expeupoacma

T (SIG),A(k) = 1]. (2)

In the above T (SIG) denotes the fact that we are concerned with the actual
implementation T of the scheme SIG rather than SIG itself.

3.2 The RSA-PSS Signature Scheme
In order to make the concepts we are discussing more concrete, we give an
example: the RSA-PSS signature scheme [4, 17].

The signing algorithm for RSA-PSS involves formatting the message and then
performing modular exponentiation using a secret exponent. Here we describe
how this process can be decomposed into its various subroutines in our model.

Suppose that signing of n-bit messages is performed using a k-bit RSA mod-
ulus N and a secret exponent d. This requires two hash functions

H : {0, 1}n+k0 → {0, 1}k1 and G : {0, 1}k1 → {0, 1}n+k0 (3)

where k = n + k0 + k1 + 1.
The signing procedure will be modelled as a VMC T = (T1, . . . , T5). We

describe the roles of the various VTMs below. The message to be signed is m.

8 Alexander W. Dent and John Malone-Lee

� T2 requires no input. It simply generates a k0 bit random number r and
writes r to the appropriate location in its VAS.

� T3 requires m and r as input. The addresses of these are provided by T1 and
the virtual memory manager does the appropriate address mapping. Having
recovered m and r from its VAS, T3 computes u = H(m||r) and writes u to
the appropriate location in its VAS.

� T4 requires m, r and u as input. The addresses of these are provided by
T1 and the virtual memory manager does the appropriate address mapping.
Having recovered m, r and u from its VAS, T4 computes v = G(u)⊕ (m||r)
and writes v to the appropriate location in its VAS.

� T5 requires u, v, d and N as input. The addresses of these are provided by
T1 and the virtual memory manager does the appropriate address mapping.
Having recovered u, v, d and N from its VAS, T5 converts the bit-string
0||u||v into an integer x and computes s = xd mod N . It then writes s to the
appropriate location in its VAS.

� T1 takes external input m and has d and N hard-coded into its VAS. Its role
is simply to write the appropriate addresses from its VAS to its subroutine-
call tape and invoke T2, . . . , T5 in turn (the appropriate addresses are implicit
in the descriptions of T2, . . . , T5 above). The �nal job of T1 is to output the
data from the portion of its VAS where s is located after T5 has been called.

Note that in the description of T5 we include the 0 in the string 0||u||v to insure
that, once the string is converted into an integer, that integer is less than N .

3.3 De�nition of Security for Implementations

In this paper we are starting with the assumption that a cryptosystem satisfying
the constraints that we outlined above is secure in a black-box setting. For a
signature scheme such as RSA-PSS this means existential unforgeability under
adaptive chosen message attack. Our aim is to provide su�cient conditions on
the various components of the implementation such that security in the black-
box setting translates into security of the physical implementation.

Let us consider an implementation T = (T1, . . . , Tn) of some cryptosystem
with public key pk and secret key sk = (sk2, . . . , skn). For i = 2, . . . , n we let

xi ← T |i(m, pk , sk i)

denote the action of executing T and halting after Ti has been run. We denote
by xi the vector of outputs from Ti, . . . , T2.

Also, for i = 3, . . . , n we let

s ← T |i(m,xi−1, pk , sk i)

The Physically Observable Security of Signature Schemes 9

denote the action of executing T from the point of Ti onwards where xi−1 denotes
the vector of outputs produced by Ti−1, . . . , T2. Note that in a complete execution
of T , T1 would know the locations of xi−1 VAS. Using these it would be able to
provide the necessary input for Ti, . . . , Tn.

We say that Ti is secure if there exists a polynomial-time simulator Si such
that no adversary A can win the following game (Explor

A,Ti
(k)) with probability

signi�cantly greater than 1/2. Note that, since Si produces no output that is
used by any later process, it can be thought of as either a VTM with a leakage
function or a function that simulates the leakage function of the VTM Ti. In
the description below, the symbol q represents an upper bound on the number
of queries that A is able to make to the implementation that it is attacking. In
the description of Explor

A,Ti
(k) below lor is an acronym for left-or-right; either

A ends up being run in the experiment on the left or in the experiment on the
right. This idea has been used extensively in the literature, see [2] for example.

Experiment Explor
A,Ti

(k)
Run the key generation algorithm for the scheme

on input 1k to produce a key-pair (pk , sk)
Prepare implementation of Ti using sk i (where sk = (sk2, . . . , skn))
Choose b at random from {0, 1}
If b = 1 run Expreal

A,Ti
(k)

If b = 0 run Expsim
A,Ti

(k)
If b′ = b return 1, otherwise return 0

Experiment Expreal
A,Ti

(k)
state ← (pk , {sk l}l 6=i)
for(j = 0, j < q, j = j + 1)

{
mj ← A(state)
xi−1 ← T |i−1(mj , pk , sk i)
xi ← Ti(xi−1, pk , sk i)

Ã A(state) → state
xi = (xi, xi−1)
sj ← T |i+1(mj , xi, pk , sk i)
state ← A(state, sj)

}
b′ ← A(state)

Experiment Expsim
A,Ti

(k)
state ← (pk , {skl}l 6=i)
for(j = 0, j < q, j = j + 1)

{
mj ← A(state)
xi ← T |i(mj , pk , sk i)
Null ← Si(mj , pk)

Ã A(state) → state
sj ← T |i+1(mj , xi, pk , sk i)
state ← A(state, sj)

}
b′ ← A(state)

Note that we assume that A is given all the secret-key material for all the Tl

with l 6= i. This is crucial for our security proof.
We de�ne

Advlor
Ti,A(k) = |2 · Pr[Explor

Ti,A(k) = 1]− 1|.
We say that it is possible to implement Ti securely if there exists and Si such
that, for all probabilistic polynomial-time A, Advlor

Ti,A(k) is a negligible function
of k. Henceforth we refer to Si as the physical simulator for Ti.

10 Alexander W. Dent and John Malone-Lee

3.4 Result
In this section we present our result for an implementation T = (T1, . . . , Tn) of
a signature scheme SIG . Our result holds in the model described in Section 2.
We state it formally below.

Theorem 1 Suppose that A is an adversary that succeeds in forging a SIG
signature by using a physical adaptive chosen message attack on the implemen-
tation T = (T1, . . . , Tn). We show that there are adversaries A2, . . . ,An,A′ such
that

Adveupoacma
T (SIG),A(k) ≤ Advlor

T2,A2
(k) + . . . + Advlor

Tn,An
(k) + Adveuacma

SIG,A′(k). (4)

The execution times of A2, . . . ,An and A′ are all essentially the same as that of
A and the number of oracle calls made by each one is the same as the number
make by A.
Proof. To prove our result we de�ne a sequence G0, . . . ,Gn−1 of modi�ed attack
games. The only di�erence between games is how the environment responds to
A's oracle queries. For any 0 ≤ i ≤ n− 1, we let Wi be the event that A succeeds
in producing a valid forged signature in game Gi. This probability is taken over
the random choices of A and those of A's oracles.

The �rst game G0 is the real attack game in which A my physically observe
the execution of T = (T1, . . . , Tn) on chosen input m. It may do this q times and
may choose its inputs adaptively based on information gleaned from previous
queries. From the de�nition of Adveupoacma

T (SIG),A(k) it follows that

Pr[W0] = Adveupoacma
T (SIG),A(k). (5)

In the second game G1 we replace the implementation of Tn with which A
interacts with Si - the physical simulator for Tn. We claim that there exists a
polynomial time adversary An, whose execution time is essentially the same as
that of A, such that

|Pr[W0]− Pr[W1]| ≤ Advlor
Tn,An

(k). (6)

It is easy to construct such an adversary An. According to the de�nition of
Explor

Ti,An
(k), An is given as input pk , (sk2, . . . , skn−1). Now, to construct An

we simply prepare implementations of T2, . . . , Tn−1 which we can use to simulate
A's view in its attack on T . Now, in the case where the bit hidden form An is 1,
A is run by An in exactly the same way that the former would be run in game
G0. Also, in the case where the bit hidden from An is 0, A is run by An in
exactly the same way that the former would be run in game G1. It follows that
any perceptible di�erence in A's performance in the transition from game G0 to
game G1 would provide us with an adversary An of the implementation of Ti.

We repeat this procedure, replacing Tn−1 with Sn−1 and so on, until we have
replaced T2 with S2. For j = 1, . . . , n− 2 this gives us

|Pr[Wj]− Pr[Wj+1]| ≤ Advlor
Tn−j ,An−j

(k), (7)

The Physically Observable Security of Signature Schemes 11

where An−j is an adversary of the implementation of Tn−j whose execution time
is essentially the same as that of A.

Finally, once this process has been completed, A does not have access to any
genuine physically observable components of T . We may therefore consider that
in game Gn−1, A is an adversary of the scheme in the black-box setting. We
conclude that there exists some adversary A′ such that

Pr[Wn−1] ≤ Adveuacma
SIG,A′(k). (8)

The result now follows from (5), (6), (7) and (8).

4 Conclusion

We have provided a set of su�cient conditions for the implementation of a cryp-
tosystem to be no less secure than the abstract cryptosystem itself. The su�cient
conditions come in two parts. Firstly we assume that the implementation of the
cryptosystem �ts a computational model based on that proposed by Micali and
Reyzin [15]. This is the model that we described in Section 2. Secondly, in Sec-
tion 3.3, we gave an indistinguishability-based de�nition of security that should
be satis�ed by the subroutines used by the implementation of the cryptosys-
tem. In Theorem 1 we proved that, in this model, if the subroutines satisfy our
de�nition then the implementation is no less secure than the cryptosystem itself.

The model that we have considered here is designed to cope with attacks
that are in some sense passive; the adversary is assumed not to actually tamper
with the internal workings of the implementation. This means that the model
does not say anything about attacks such as the fault attacks of Biham et al. [5].
However, there has been some preliminary research into the possibility of a
theoretical model to treat such cases [10].

Although we believe that a formal security treatment for side-channel envi-
ronments may provide valuable insight, we recognise that it may be very di�-
cult to prove indistinguishability results about implementations in a complexity-
theoretic sense. An orthogonal line of research is to develop concrete tests that
can be applied to implementations in order to assess and compare their secu-
rity. For example, Coron et al. have proposed a set of statistical tests for the
detection of leaked secret information [7]. A second interesting approach is the
hidden-markov model technique proposed by Karlof and Wagner [13]. The aim
of this technique is to infer information about a secret key based on side-channel
information.

While our theoretical approach provides us with su�cient conditions for se-
cure implementations, the statistical techniques above provides us with necessary
conditions. By working on the problem from both these ends (so to speak), one
hopes to over time converge on a realistic, well-de�ned set of conditions that a
secure implementation of a cryptosystem should satisfy.

12 Alexander W. Dent and John Malone-Lee

References
1. Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The

EM side-channel(s). In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar,
editors, Chryptographic Hardware and Embedded Systems � CHES 2002, 4th In-
ternational Workshop, volume 2523 of Lecture Notes in Computer Science, pages
29�45, Redwood Shores, CA, USA, August 13�15 2003. Springer-Verlag, Berlin,
Germany.

2. Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations
of Computer Science, pages 394�403, Miami Beach, Florida, October 19�22, 1997.
IEEE Computer Society Press.

3. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
among notions of security for public-key encryption schemes. In Hugo Krawczyk,
editor, Advances in Cryptology � CRYPTO '98, volume 1462 of Lecture Notes in
Computer Science, pages 26�45, Santa Barbara, CA, USA, August 23�27, 1998.
Springer-Verlag, Berlin, Germany.

4. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How
to sign with RSA and rabin. In Ueli M. Maurer, editor, Advances in Cryptology �
EUROCRYPT '96, volume 1070 of Lecture Notes in Computer Science, Saragossa,
Spain, May 12�16, 1996. Springer-Verlag, Berlin, Germany.

5. Eli Biham and Adi Shamir. Di�erential fault analysis of secret key cryptosys-
tems. In Walter Fumy, editor, Advances in Cryptology � EUROCRYPT '97, volume
1233 of Lecture Notes in Computer Science, pages 513�525, Konstanz, Germany,
May 11�15, 1997. Springer-Verlag, Berlin, Germany.

6. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
checking cryptographic protocols for faults. In Walter Fumy, editor, Advances in
Cryptology � EUROCRYPT '97, volume 1233 of Lecture Notes in Computer Sci-
ence, pages 37�51, Konstanz, Germany, May 11�15, 1997. Springer-Verlag, Berlin,
Germany.

7. Jean-Sébastien Coron, David Naccache, and Paul Kocher. Statistics and secret
leakage. ACM SIGOPS Operating Systems Review, 3(3):492�508, August 2004.

8. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167�226, 2003.

9. Federal Information Processing Standards Publication 46-3 (FIPS PUB 46-3): Data
Encryption Standard, October 1999.

10. Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin.
Algorithmic tamper-proof (ATP) security: Theoretical foundations for security
against hardware tampering. In Moni Naor, editor, TCC 2004: 1st Theory of Cryp-
tography Conference, volume 2951 of Lecture Notes in Computer Science, pages
258�277, Cambridge, MA, USA, February 19�21, 2004. Springer-Verlag, Berlin,
Germany.

11. Sha� Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28:270�299, 1984.

12. Sha� Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281�308, April 1988.

13. Chris Karlof and David Wagner. Hidden markov model cryptanalysis. In Colin D.
Walter, Çetin Kaya Koç, and Christof Paar, editors, Chryptographic Hardware and

The Physically Observable Security of Signature Schemes 13

Embedded Systems � CHES 2003, 5th International Workshop, volume 2779 of
Lecture Notes in Computer Science, page 2, Cologne, Germany, September 8�10
2003. Springer-Verlag, Berlin, Germany.

14. Paul Kocher, Joshua Ja�e, and Benjamin Jun. Di�erential power analysis. In
Michael J. Wiener, editor, Advances in Cryptology � CRYPTO '99, volume 1666
of Lecture Notes in Computer Science, pages 388�397, Santa Barbara, CA, USA,
1999.

15. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended ab-
stract). In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference,
volume 2951 of Lecture Notes in Computer Science, pages 278�296, Cambridge,
MA, USA, February 19�21, 2004. Springer-Verlag, Berlin, Germany. Full version
available at http://eprint.iacr.org2003/120.

16. Dan Page. Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical Report CSTR-02-003, University of Bristol Department of Computer Science,
June 2002.

17. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signature and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120�126, 1978.

18. Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. Cryptanalysis of DES implemented on computers with cache. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Chryptographic Hard-
ware and Embedded Systems � CHES 2002, 4th International Workshop, volume
2523 of Lecture Notes in Computer Science, pages 62�76, Redwood Shores, CA,
USA, August 13�15 2003. Springer-Verlag, Berlin, Germany.

