
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Choosing key sizes for cryptography

Alexander W. Dent

Information Security Group, University Of London, Royal Holloway, UK

a b s t r a c t

After making the decision to use public-key cryptography, an organisation still has to make

many important decisions before a practical system can be implemented. One of the more

difficult challenges is to decide the length of the keys which are to be used within the

system: longer keys provide more security but mean that the cryptographic operation will

take more time to complete. The most common solution is to take advice from information

security standards. This article will investigate the methodology that is used produce these

standards and their meaning for an organisation who wishes to implement public-key

cryptography.

ª 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The power of public-key cryptography is undeniable. It is

astounding in its simplicity and its ability to provide solutions

to many seemingly insurmountable organisational problems.

However, the use of public-key cryptography in practice is

rarely as simple as the concept first appears. First one has to

choose the type of public-key cryptography that is appropriate

to solve the organisational problem in question. The array of

choice is bewildering: public-key encryption schemes, digital

signature schemes, signcryption schemes, identification

schemes, attestation schemes, and any number of more spe-

cialised schemes with different functional properties and

security guarantees.

After which the organisation has to develop an infra-

structure to generate and distribute authentic copies of the

public and private keys. The problems with developing an

appropriate public-key infrastructure (PKI) have been widely

documented. Even the importance of, and problems with,

generating random keys have been widely discussed in both

the practical and theoretical literature. One aspect of key

generation has been largely ignored in the practical literature:

the problem of choosing appropriate key lengths.

In a well-designed cryptographic scheme, a longer key

means higher security (and a reduced chance of the system

being compromised by an attacker). It also typically means

a slower scheme. Most symmetric cryptographic schemes do

not allow the use of keys of different lengths. If a designer

wishes to offer a symmetric scheme which provides different

security levels depending on the key size, then the designer

has to construct distinct variants of a central design which

make use of different pre-specified key lengths. (In other

words, while AES-128 and AES-256 are based on the same

principles, they have different internal components which

have been chosen to complement the different key lengths). In

particular, the allowable key lengths are chosen by the

scheme designer. Public-key schemes are different e they

typically have one design which can be used with keys of any

length (without further input from the scheme designer).

Hence, it is up to the user, rather than the designer, to deter-

mine an appropriate key length for use with the scheme.

This often leaves a complicated mathematical decision

in the hands of a mathematically inexperienced security

manager. The most common mechanism for determining an

appropriate key length is to consult a standard. There are

several standardswhich give key length recommendations for

common public-key technologies (e.g., NIST, 2007; ECRYPT-II,

2010). To aid security managers in making sensible decisions,

these standards typically give key lengths in terms of the

amount of time that the key will “work” e i.e., the amount of

E-mail address: A.Dent@rhul.ac.uk.

ava i lab le at www.sc ienced i rec t . com

www.compsecon l ine .com/pub l i ca t ions /prod in f .h tm

i n f o rma t i o n s e c u r i t y t e c hn i c a l r e p o r t 1 5 (2 0 1 0) 2 1e2 7

1363-4127/$ e see front matter ª 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.istr.2010.10.006

Author's personal copy

time that data secured by a key of this length can be consid-

ered secure. Themathematical source of the numbers in these

standards, and their practical meaning, is often misunder-

stood. This article will investigate the methodologies which

produce these standards and attempt to give some intuition as

to whether the advice they provide is suitable for a particular

cryptographic scheme.

2. Key-length standards

For the purposes of this article we will differentiate between

a cryptographic primitive and a cryptographic scheme. A

cryptographic scheme is a set of practical algorithms that can

beusedwithinanorganisation to solve somesecurityproblem.

A cryptographic primitive is a basic piece of mathematics on

which cryptography can be based, but which is not suitable for

use as a cryptographic scheme on its own. For example, the

RSA transform (Rivest et al., 1978) is a primitive, as it can be

used to build cryptographic scheme but is generally not

considered practical for use as a cryptographic scheme on its

own. There are a bewildering array of different public-key

schemes, but the vast majority of practical schemes are based

on a few basic primitives:

� RSA- or factoring-based. For example, RSA-OAEP encryption,

RSA-KEM encryption, HIME(R) encryption, RSA full domain

hash signatures, RSA-PSS signatures, Rabin signatures, etc.

� Discrete-logarithm-based. For example, DHIES encryption,

PSEC encryption, DSA signatures, ElGamal signatures,

Schnorr signatures, HMQV key agreement, etc.

� Elliptic-curve-based. For example, ECIES encryption, PSEC

encryption, ECDSA signatures, etc.

Therefore, the first step in determining secure parameters

for a cryptographic scheme is to determine secure parameters

for the underlying primitive. This is a highly technical math-

ematical task and there are a number of important research

papers which attempt to answer this question (Blaze et al.,

1996; Lenstra and Verheul, 2001; Lenstra, 2004). The conclu-

sions of these research papers have been presented as guid-

ance to the security community in the form of international

standards or recommendations (e.g., NIST, 2007; ECRYPT-II,

2010). These standards typically recommend key sizes by

comparing them to symmetric keys with equivalent security

and/or by giving an estimate for the length of time that the key

will keep data secure.We give a some examples of the key size

recommendations1 in Tables 1 and 2.

It is important to understand the meaning of the validity

period. The validity period tells you how long data that has

been protected with a key of a certain length can be consid-

ered secure e i.e., after the expiry date, data secured by a key

can no longer be considered secure. It is not meant to serve as

a guide for when a key should replaced or updated. There are

good reasons to change keys before the expiry date, for

example because it reduces the impact of key exposure. The

use of long keys should not be thought of as a substitute for

good key management and key lifecycle practices.

It is also important to understand the source of these

numbers. For certain symmetric key schemes, it is possible to

prove that no attacker can break the scheme, regardless of the

amount of time or computational resources they apply to the

problem, e.g., Shannon’s one-time pad encryption scheme

(Shannon, 1949). This can never be the case for public-key

cryptography: given a public key, and sufficient time, an

attacker can always deduce the corresponding private key and

thus break the scheme. The best we could ever hope to ach-

ieve is to show that an attacker is unlikely to break the scheme

in a given period of time. However, even with this more

modest goal, the mathematics is unfavourable. A proof that

there exists no strategy which would break a public-key

scheme with any reasonable probability would answer

a famous open problem in theoretical computer science e the

NPs P conjecturee for which the ClayMathematics Institute2

have offered a $1M prize.

So, if there exists no mathematical way to bound the

probability that an attacker can break a scheme within

a certain time, how do the standards generate reliable reco-

mmendations for key sizes? Not all standards bodies chose to

release their methodologies for assessing key-length security;

however, the publicly-known methodologies seem very

similar (Lenstra and Verheul, 2001; Lenstra, 2004; ECRYPT-II,

2010). The key principle is that, since we cannot mathemati-

cally prove a boundon the probability of an algorithmbreaking

a scheme, we rely on the opinion of skilled mathematicians

who understand the algorithms that may be used to break the

underlyingmathematical primitives, assessed through a three

stage process.

In the first stage, the mathematicians attempt to find

a relationship between the time it would take the best-known

algorithms to break a random example of the underlying

primitive and the time it would take an algorithm to break

a symmetric key scheme through exhaustive search using

technology available at a particular point in time. For

example, in the case of breaking the RSA primitive, we

examine the best-known algorithms for inverting a randomly-

chosen ciphertext produced by encrypting a randomly-chosen

message using a randomly-chosen RSA public key. The best-

known algorithm to break the RSA primitive involves

factoring the RSAmodulus.We know fromhistorical data that

Table 1 e ECRYPT-II key size recommendations (ECRYPT-
II, 2010).

Equivalent
symmetric

Validity RSA-
based

Discrete-
log-based

Elliptic-
curve-based

key size modulus
size

Key
size

Group
size

key size

80 Up to 2014 1248 160 1248 160

112 Up to 2020 2423 224 2423 224

128 Up to 2040 3248 256 3248 256

160 e 5312 320 5312 320

192 e 7936 384 7936 384

256 Foreseeable

future

15424 512 15424 512

1 See also http://www.keylength.com/. 2 http://www.claymath.org/millennium/.

i n f o rma t i o n s e c u r i t y t e c hn i c a l r e p o r t 1 5 (2 0 1 0) 2 1e2 722

Author's personal copy

factoring a 512-bit RSA modulus was roughly equivalent to

performing an exhaustive search on a 50-bit symmetric key in

1999. This starting point can used to extrapolate a formula

that relates different RSA key lengths to their equivalent

symmetric key lengths in 1999.

We equate public-key lengths with their equivalent

symmetric-key lengthsbecause it ismucheasier toestimate the

amount of time forwhich a symmetric keywill provide security

(especially as we are only concerned with exhaustive search

attacks). It is easy to estimate the number of computer

commands it would take to break a symmetric key of a partic-

ular length. This gives rise to anestimate for the amountof time

it would take to break a public-key primitive using technology

available at aparticular time (e.g., in1999). The researchers then

use amathematicalmodel which relates the time it would take

tobreakapublic-keyprimitiveusinghistorical technologytothe

amount of time that it would take to break that primitive using

current technology. This model may include factors such as

(Lenstra and Verheul, 2001; Lenstra, 2004):

� Moore’s Law. This models the increase in computing power

that can be obtained for the same cost over time. Roughly

speaking, Moore’s Law states that computing power doubles

every 18 months. Thus, the amount of time taken to break

the primitive might roughly be expected to halve over an

eighteen month period.

� Budget Increases. This models the increase in budget that

may be available to the attacker over time. For example, we

may assume that the attacker’s budget doubles every two

years. If an algorithm can be efficiently parallelised, thenwe

might expect the amount of time taken to break the primi-

tive might halve every two years.

� Cryptanalytic Advances. This models the advances in cryp-

tography which give rise to better attack strategies against

the public-key primitives. Obviously, there can be no cryp-

tographic advances that increase the effectiveness of

a brute force search against a symmetric key. However,

there may well be advances in cryptography which improve

the algorithms for breaking the public-key primitive and so

renders the equivalence deduced in the first stage of the

analysis obsolete. If we were to assume that cryptographic

advances mean that the time taken to break a public-key

primitive halves every two years, then we can compensate

for this by assuming that the time taken to find a symmetric

key by brute force also halves every two years.

Thisgives rise toanestimate for theamountof time itwould

take for an attacker to break a primitive in any particular year.

Lastly, the researchers decidewhat isanacceptable lengthof

time to give a reasonable security margin. In other words, we

havetodecidethesecurity levelwhich isacceptable fordifferent

applications.Akeywhich ismeant tobeusedwithhigh-security

applicationsmayneed to be longer thanakeywhich ismeant to

be used for other applications. This is, again, a judgement that

has to bemade by experienced security experts.

There are several interesting points to be noted about this

process. The first is that it is only concerned with security of

the underlying primitive. The second is that it does not give an

estimate of the amount of time t0 required by an attack

strategy to have a probability of 30 of breaking a primitive e it

extrapolates the amount of time required to break the scheme

based on previously successful strategies and mathematical

models of how successful these strategies would be for longer

keys or in later years. As we shall see, both of these points

have a subtle impact when considering the security of a key

length for a cryptographic scheme.

3. Provable security and concrete security

The estimates that we have for secure key lengths for primi-

tives seem to be, for all practical purposes, reliable. Is this the

end of the key length story? Sadly not. Consider the following

nonsensical argument:

If the RSA primitive was insecure then all RSA-based schemes

would be insecure too.

For sufficiently large key lengths, the RSA primitive is secure.

Therefore, all RSA-based schemes are secure.

This argument has the same structure as:

If the author was not a man then the author could not be King

of England.

The author is a man.

Therefore, the author is King of England.

The argument does not take into account the fact that

there might be other reasons why the author is not King of

England despite the fact that his gender is consistent with the

job requirement. Similarly, the original argument does not

take into account the fact that there might be reasons why

a cryptographic scheme is insecure despite the fact that the

underlying primitive is secure.

This is not just a theoretical issue e the EMV payment

system uses a digital signature scheme based on the RSA

primitive (EMV, 2008). At a conference in 2009, a team of

cryptographers announced an attack against the EMV signa-

ture scheme and implemented the attack against the scheme

with a 2048-bit RSA modulus (Coron et al., 2009). This scheme

had been widely considered to be secure and the attack was

implemented against a key which the NIST recommendations

claim should be secure until 2030. The attack did not break the

RSA primitive but broke the way in which the RSA primitive

was used to create a practical signature scheme. (It should be

noted that the attack against this signature scheme does not

imply an attack against the EMV payment system, which

Table 2 e NIST key size recommendations (NIST, 2007).

Equivalent
symmetric

Validity RSA-
based

Discrete-
log-based

Elliptic-
curve-based

key size modulus
size

Key
size

Group
size

key
size

80 Up to 2010 1024 160 1024 160

112 Up to 2030 2048 224 2048 224

128 Beyond 2030 3072 256 3072 256

192 e 7680 384 7680 384

256 e 15360 512 15360 512

i n f o rma t i o n s e c u r i t y t e c hn i c a l r e p o r t 1 5 (2 0 1 0) 2 1e2 7 23

Author's personal copy

remains secure despite the fact that the signature scheme is

flawed, although this attack may have serious repercussions

for other systems thatmake use of the EMV signature scheme).

If we think of the methodology used to estimate secure

key lengths then it quickly becomes apparent as to why

a secure mathematical primitive does not immediately give

a secure cryptographic scheme. As we discussed in Section 2,

secure key sizes are estimated by examining the length of

time that the best-known algorithm would take to break

a random instance of the primitive. So, for example, when

estimating secure key sizes for the RSA primitive, we inves-

tigate the time that the best-known algorithm would take to

decrypt a randomly-chosen ciphertext for a randomly-

chosen public key. However, in the real would, ciphertexts

are not randomly-chosen e they are encryptions of real-

world messages. Furthermore, in the real-world, an attacker

isn’t simply trying to invert a given ciphertext, but is usually

trying to break into an interactive computer system, which

gives the attacker lots of new ways to break the encryption. If

you look at it in this light, it is amazing that any security

primitive gives rise to a secure scheme at all!

The branch of cryptography which tries to relate the secu-

rity of a scheme in a real-world situation to the security of the

underlyingmathematical primitive is called provable security.

If we can present a mathematical proof that the difficulty of

breaking a scheme is as hard as the difficulty of breaking some

underlying mathematical primitive then we say that the

scheme is provably secure or that it has a proof of security. The

term “provable security” is something of a misnomer: a proof

of security doesnot actuallyprove that the scheme is secure! In

order to prove that a scheme is secure we would have to show

that the underlying primitive cannot be broken, which, as we

discussed in Section 2, is unlikely to happen in the near future.

A proof of security demonstrates that any attack strategy

which could break the schemegives rise to an algorithmwhich

breaks the underlying primitive. If we assume that the

underlying primitive is secure, based on empirical evidence,

then we can conclude that the schememust also be secure. In

this situation, we sometimes say that the problem of breaking

the scheme reduces to the problem of breaking the underlying

mathematical primitive and some authors have tried to

replace the term provable security with the term reductionist

security in order to remove the connotation of an absolute

security guarantee given by the traditional term.

The provable securitymethodologyworks in two stages: (1)

one defines amathematical model which describes the way in

which the attacker can interact with the cryptographic

scheme and what it means to say that an attacker has broken

the scheme, and (2) one shows that, in this model, an attack

strategy that breaks the scheme can be adapted to give an

algorithm which breaks the underlying mathematical primi-

tive. This leads to lots of statements of the form,

If there exists an attack strategy against the cryptographic

scheme that runs in time at most t and succeeds in breaking the

scheme with probability at least 3 when using keys of length [,

then there exists an algorithm which runs in time at most t0 and
succeeds in breaking the underlying mathematical primitive with

probability at least 30 (where t0 and 30 can be computed from t, 3

and [).

This gives a viable strategy for choosing key sizes for

a particular cryptographic scheme. First, we choose the level

of security that we require, by choosing values for t and 3

whichmeet our security needs (i.e., that wewould like there to

exist no attack strategy that runs in time t which has success

probability at least 3). Thenwe can increase the value of [until

the proof of security tells us that such an attack strategy

would give rise to an algorithm which breaks the underlying

primitive faster than the best-known current algorithms3 If

we assume that such an algorithm does not exist, thenwe can

conclude that a key of length [must be secure. This approach

is known as concrete security.

4. Criticisms of concrete security

The use of concrete security, and provable security in general,

has been criticised in a series of articles by Koblitz and

Menezes (Koblitz and Menezes, 2006; Koblitz and Menezes,

2007; Koblitz, 2007). We will examine their, and other, criti-

cisms in this section.

4.1. “Provable security”

As we discussed in Section 3, the field of “provable security” is

somewhat misnamed, as a “proof of security” doesn’t actually

giveaproof thata scheme issecure.Acorrect “proofof security”

only assures you that for, long enough public keys, the scheme

is as secure as the underlying primitive. Sincewe cannot prove

that any of the underlying primitives are secure, our “provable

security” results must necessarily be conditional. Unfortu-

nately, the time has passed where this misnomer might be

correctedand the term“provable security” isunlikely to change

in the near future.

4.2. Trust in the primitive

A proof of security only guarantees security if the underlying

primitive is secure. The majority of the schemes used in prac-

tice are based on the RSA problem, the discrete logarithm

problem, or the elliptic-curve discrete logarithm problem.

These primitives have been widely studied and are trusted to

be secure. Furthermore, mathematicians have had decades of

experience in constructing algorithms which attempt to break

these primitives and, aswe discussed in Section 2, the onlyway

we can assess the security of a primitive is to estimate the time

that the best-known algorithm would take to break the primi-

tive. We trust these underlying primitives because of the time

that the experts have taken in studying them.

However, over the last ten years, the cryptographic

community has developed new technologies and new primi-

tives on which to base cryptography, such as elliptic-curve

pairings and mathematical lattices. These new technologies

have allowed the cryptographic community to develop new

types of cryptographic scheme with functional properties and

3 At least, as far as we are able to tell e remember that the key-
length standards do not attempt to give a bound on the proba-
bility that an attack strategy running in time t0 has probability 30

in breaking the primitive.

i n f o rma t i o n s e c u r i t y t e c hn i c a l r e p o r t 1 5 (2 0 1 0) 2 1e2 724

Author's personal copy

security guarantees which were not possible with the original

triptych of primitives. Provable security allows us to relate the

security of these new schemes to well-defined underlying

primitives, but it does not tell us the strength of the underlying

primitive. It is hard to accurately estimate key lengths for

these new primitives using the methodology in Section 2, and

so it is hard to estimate practical key lengthswhich give rise to

secure and efficient systems.

4.3. The credibility problem

Another unexpected problems comes from the credibility of

individual security proofs. A security proof is not a calculation,

but a complex mathematical argument that often comprises

many pages of technical statements. It is easy for one or more

mistakes to creep into these arguments. Security proofs can

only be trusted if they have been thoroughly checked by

a range of experts and deemed to be correct. The majority of

standardised schemes have security proofs which have been

checked and re-checked many times; thus, we can consider

them to be correct. However, cryptographic schemes which

are newer, or are based on more obscure principles, may not

have had a sufficient level of scrutiny to determine if the

security proof is correct or not.

4.4. Moving outside the model

As discussed in Section 3, a security proof only considers the

security of a scheme in a mathematical model of reality. This

problem is endemic: it is impossible to make mathematical

statements except within a mathematical model and it is

impossible to capture the complexities of the real-world in

a mathematical model! Inevitably this means that there may

be ways to attack a “provably secure” cryptographic scheme

which lie outside the mathematical model of reality in which

the scheme has been proven.

For example, the majority of proofs of security assume

that the cryptographic scheme is an algorithm running on

a “perfect” computer, which takes inputs and gives outputs

without revealing any other information or making mistakes.

However, in reality, computer chips can be unreliable and

often leak information about the data that they are processing

through real-world emanations. Examples of these “side

channels” include the amount of time taken to perform

a computation, the amount of power consumed while per-

forming a computation, and the form of the electro-magnetic

radiation given off during the computation. All of these side

channels can be used to break the security of cryptographic

schemes in practical situations and there has been little

satisfactory progress on designing securitymodels which take

these types of attack into account.

Thus, a security proof only provides evidence as to the

security of a cryptographic scheme if the scheme isdeployed in

an real-world environment which is consistent with the

mathematical model of reality described in the security proof.

The construction of meaningful models of reality is a major

research challenge for cryptographers even when one doesn’t

consider troublesome issues such as physical side channels. In

theory, eachusage scenario for a cryptographic schemeshould

prompt a new model of reality; however, the cryptography

community typically attempts to construct schemeswhich are

secure in some kind of “supermodel” which guarantees secu-

rity in anypracticalmodel of reality inwhich the schemecould

be used. For the majority of the different types of public-key

scheme, these models are now fixed, but even within these

models mistakes can be made. The attacks of (Albrecht et al.,

2009) against the (provably secure) SSH protocol (Bellare

et al., 2004) are only feasible because the model in which the

SSH protocol was proven secure does not match the way in

which the scheme is used in practice.

4.5. Tightness

The previous sections discuss general problems with the use

of provable security, rather than specific problems related to

the difficulty of determining effective key lengths. However,

there is one pivotal criticism of provable security that has

a significant effect when examining key lengthse the problem

of interpreting the tightness of the security proof.

Recall that the concrete securitymethodology, described in

Section 3, uses the security proof to relate an attacker that

runs in time t and has probability 3 of breaking the scheme to

an algorithm that runs in time t0 and has probability at most 30

in breaking the underlying primitive. In early examples of

security proofs, we often had that t0 z t and 30 z 3. We call such

reductions “tight”. A tight reduction can be interpreted

(roughly) as saying that the security of the scheme is identical

to that of the underlying primitive. For such schemes, the key-

length standards can be used directly as guidance on the

security of different key lengths.

However, as the complexity of security proofs has

increased, the relationships between t, t0, 3 and 30 has become

more complicated. How should we interpret a security proof4

inwhich t0 z 2t and 30 z 32? Or a security proof5 inwhich t0ztþ
Oð3�2logð3�1Þl�1logðl�1ÞÞ and 30zl3=4 for l ¼ 1=8ðnþ 1Þq, where

n is a parameter of the scheme and q is a parameter of the

allowable attack strategies? We call these reductions “loose”

or “non-tight”. If we apply the concrete security methodology

to loose reductions then we will often find that we require

keys to be unfeasibly large. Alternatively, if we use keys of the

length recommended in the key-length standards, then loose

proofs of security do not give any reasonable practical security

guarantees.

Some authors, most notably (Koblitz and Menezes, 2006;

Koblitz and Menezes, 2007; Koblitz, 2007), have argued that

this means that loose security proofs have no practical

meaning and should be ignored. Indeed, some authors have

argued that loose security proofs are a waste of everyone’s

time and should not be considered a legitimate area of

cryptographic study. This article does not take that position:

we argue that all security proofs, even security proofs with

loose reductions, are useful in determining practical key

lengths.

4 These are essentially the parameters found when using the
forking lemma (Pointcheval and Stern, 1996) to produce proofs of
security for signature schemes.

5 These parameters are found in a security proof of (Waters,
2005), although a tighter security proof has now been found for
the scheme in question.

i n f o rma t i o n s e c u r i t y t e c hn i c a l r e p o r t 1 5 (2 0 1 0) 2 1e2 7 25

Author's personal copy

Consider a security proof in which t0 z t and 30 � 3. It is

tempting to believe that this should be interpreted as saying

that there exists an attacker who can break the scheme in

time t with success probability 3[30 and that therefore long

keys are required. This is a fallacious conclusion. The security

proof only says that if there did exist an attacker who can

break the schemewith probability 3 in time t then there would

exist an algorithm which can break the underlying primitive

with probability at least 30 in a similar time. It may be that an

attacker that can break the scheme with probability 3 always

gives rise to an algorithm which can break the primitive with

probability 3; the proof neither excludes this possibility nor

guarantees it. In many cases, an examination of the mathe-

matics of the security proof itself can give empirical evidence

as to whether 3[30 in practice or not.

An examination of security proofs with loose reductions

suggests that most of the time the “looseness” in the security

reduction is not the result of a viable attack strategy against

the scheme, but of the technical mathematics required by the

proof strategy used to relate t, t0, 3 and 30. As an example, we

consider a common problem in security proofs related to the

number of users of a scheme. Inmany security reductions, the

proof of security shows that t0 z t and 30z3=ð#usersÞ. The logic

behind these reductions is simple: when assessing the secu-

rity of the underlying primitive, we consider only a single

instance of the primitive, which typically corresponds to

a practical situation in which the attacker is trying to break

a specific user’s public key. However, in practice, the attacker

may be satisfied with breaking anyone’s public key and so his

chance of success increases by a factor of #users. This seems

logical: after all, there are attack strategies whose probability

of success increases by a factor of #users when moving from

attacking a single key to attacking multiple keys, for example

a brute force strategy which simply generates public/private

key pairs at random until it finds that it has generated some

user’s public key. Therefore, if we naı̈vely use the concrete

security methodology, then we should increase key lengths

depending on the number of users in the system, a quantity

that seems to be entirely independent of the security level of

the cryptographic scheme.

The problem is that there is a mismatch between the

methodology used to estimate practical key lengths (Section 2)

and theconcretesecuritymethodology (Section3).Theconcrete

security methodology has to give a relationship between t, t0, 3
and 30 for any attack strategy, even inefficient strategies such as

brute force search; the methodology used to estimate practical

key lengths only considered the best-known attack strategies.

Most cryptographers would not recommend significantly

increasing individual users’ key sizes in systems where there

are a large number of users, despite the fact that the security

proof may recommend an increase related to #users, because

the best-known attack strategies can only target one key at

a time. Since the best-known attack strategies can’t be used to

attack #users keys simultaneously, there is no need to take

notice of this term in the security proof when considering

practical key lengths.

However, there are also examples of situations where

a security proof has shown a practically significant gap

between the security of the scheme and the security of the

underlying primitive. For example, a theoretical analysis of

a new cryptographic primitive, called the d-strong Diffie-Hell-

man problem, suggested that it might be weaker than other

similar problems by a factor of
ffiffiffi

d
p

(Boneh et al., 2004). Thiswas

later confirmed througha valid attack strategy (Cheon, 2006). A

thorough understanding of the algorithms that can be used to

attack a primitive and the way in which the security proof

relates the security of the scheme to the security of the prim-

itive can highlight differences between the primitive and the

schemewhichmay result in the scheme requiring longer keys

tobepractically secure.Thus,weargue thateven loosesecurity

reductions can be very useful in determining appropriate key

lengths, when used as evidence by a qualified mathematician

who can interpret their practical significance correctly.

5. Conclusion

For an organisation who wishes to use public-key cryptography

to protect high-security assets, the difficulties in choosing

sensible key lengths are clear. We may estimate the security of

the underlying primitive, but our estimates can never be

completed trusted and do not necessarily tell us the security of

the actual cryptographic scheme. Provable security results can

be used to provide some evidence as to security of the scheme,

but security proofsmust be interpreted correctly if they are to be

used effectively. Almost all standardised schemes now have

a proof of security, but these proofs often run to a dozen pages

whenpresented in their entirety. It can easily be argued that this

gives an overload of information, which actually inhibits

sensibledecision-making strategies. Inorder to effectivelymake

use of all the information provided by a security proof, an orga-

nisation needs two different sorts of cross-discipline experts:

� An expert in provable security and the mathematical algo-

rithms that can be used to break cryptographic primitives

(who can make a sensible assessment of the security

reduction and its implications for the choice of an appro-

priate key length).

� An expert in mathematical models and secure imple-

mentations (who can make a sensible assessment of the

extra measures required to prevent attacks which are not

included in the mathematical model of reality used by the

security proof).

It is unclear if even the most security conscious of orga-

nisations will be able to justify the time and expense of

employing these experts to accurately estimate the length of

secure and efficient keys.

Luckily, we may always turn to standardisation bodies to

help amortise the cost of these experts over many organisa-

tions. The existing key-length standards (e.g., NIST, 2007;

ECRYPT-II, 2010) provide reliable estimates for the security

of the basic primitives, but these cannot be completely trusted

to provide estimates of the security of the cryptographic

schemes based on these primitives. Standardisation bodies

are slowly beginning to recognise this fact and there are some

attempts to produce application-specific key length guide-

lines, e.g., (NIST, 2009). Furthermore, as the next generation of

cryptographic schemes are being developed, more effort is

i n f o rma t i o n s e c u r i t y t e c hn i c a l r e p o r t 1 5 (2 0 1 0) 2 1e2 726

Author's personal copy

needed to determine secure and efficient parameter sizes for

the new primitives that these schemes use.

r e f e r e n c e s

Albrecht MR, Paterson KG, Watson GJ. Plaintext recovery attacks
against SSH. In: IEEE Symposium on Security and Privacy. IEEE
Computer Society; 2009. p. 16e26.

BellareM, KohnoT, Namprempre C. Breaking and provable repairing
the SSH authenticated encryption scheme: a case study of the
Encode-then-Encrypt-and-MAC paradigm. ACM Transactions on
Information and System Security 2004;7(2):206e41.

M. Blaze, W. Diffie, R.L. Rivest, B. Schneier, T. Shimomura, E.
Thompson, and W. Wiener. Minimal key lengths for
symmetric ciphers to provide adequate commercial security.
Manuscript, January 1996.

Boneh D, Boyen X, Shacham H. Short group signatures. In:
Franklin M, editor. Advances in Cryptology e Crypto 2004.
Lecture Notes in Computer Science, vol. 3152. Springer-Verlag;
2004. p. 41e55.

Cheon JH. Security analysis of the strong Diffie-Hellman problem.
In: Vaudenay S, editor. Advances in Cryptology e Eurocrypt
2006. Lecture Notes in Computer Science, vol. 4004. Springer-
Verlag; 2006. p. 1e11.

Coron J-S, Naccache D, Tibouchi M, Weinmann R-P. Practical
cryptanalysis of ISO/IEC 9796-2 and EMV signatures. In:
Halevi S, editor. Advances in Cryptology e Crypto 2009.
Lecture Notes in Computer Science, vol. 5677. Springer-Verlag;
2009. p. 428e44.

EMVCo. EMV Integrated circuit card specifications for payment
systems: Book 2 d Security and key management; June 2008.

European Network of Excellence in Cryptology II. ECRYPT II yearly
report on algorithms and keysizes; March 2010.

Koblitz N. The uneasy relationship between mathematics and
cryptography. Notices of the AMS 2007;54(8):972e9.

Koblitz N, Menezes AJ. Another look at “provable security” II. In:
Barua R, Lange T, editors. Progress in Cryptology e

INDOCRYPT 2006. Lecture Notes in Computer Science,
vol. 4329. Springer-Verlag; 2006. p. 148e75.

Koblitz N, Menezes AJ. Another look at “provable security”.
Journal of Cryptology 2007;20(1):3e37.

Lenstra AK. Key lengths. In: Bidgoli H, editor. Handbook of
information security. John Wiley & Sons; 2004.

Lenstra AK, Verheul ER. Selecting cryptographic key sizes. Journal
of Cryptology 2001;14(9):255e93.

National Institute of Standards and Technology (NIST). NIST
SP800e57: Recommendation for key management e Part 1:
general; March 2007.

National Institute of Standards and Technology (NIST). NIST
SP800e57: Recommendation for key management e Part 3:
application-specific key management guidance; Dec 2009.

Pointcheval D, Stern J. Security proofs for signature schemes. In:
Maurer U, editor. Advance in Cryptology e Eurocrypt ’96.
Lecture Notes in Computer Science, vol. 1070. Springer-Verlag;
1996. p. 387e98.

Rivest RL, Shamir A, Adleman L. A method for obtaining digital
signatures and public-key cryptosystems. Communications of
the ACM 1978;21:120e6.

Shannon CE. Communication theory of secrecy systems. Bell
System Technical Journal 1949;28:656e715.

Waters B. Efficient identity-based encryption without random
oracles. In: Cramer R, editor. Advances in Cryptology e

EUROCRYPT 2005. Lecture Notes in Computer Science,
vol. 3494. Springer-Verlag; 2005. p. 114e27.

i n f o rma t i o n s e c u r i t y t e c hn i c a l r e p o r t 1 5 (2 0 1 0) 2 1e2 7 27

