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ORBIT-HOMOGENEITY IN PERMUTATION GROUPS

PETER J. CAMERON and ALEXANDER W. DENT

Abstract

This paper introduces the concept of orbit-homogeneity of permutation groups: a group G is orbit-
t-homogeneous if two sets of cardinality t lie in the same orbit of G whenever their intersections
with each G-orbit have the same cardinality. For transitive groups, this coincides with the usual
notion of t-homogeneity. This concept is also compatible with the idea of partition transitivity
introduced by Martin and Sagan.

Further, this paper shows that any group generated by orbit-t-homogeneous subgroups is orbit-
t-homogeneous, and that the condition becomes stronger as t increases up to bn/2c, where n is
the degree. So any group G has a unique maximal orbit-t-homogeneous subgroup Ωt(G), and
Ωt(G) ≤ Ωt−1(G).

Some structural results for orbit-t-homogeneous groups and a number of examples are also
given.

A permutation group G acting on a set V is said to be t-homogeneous if it acts
transitively on the set of t-element subsets of V . Informally, this means that all
t-element subsets of V are “alike” with respect to the action of G. If the action of
G is intransitive, it cannot be t-homogeneous, since the intersections of different
t-subsets with orbits of G may be different. We define a more general condition to
cover this situation: we say that G is orbit-t-homogeneous on V if two t-sets which
meet each orbit in the same number of points are equivalent under the action of
G. We give a similar extension of the notion of partition transitivity introduced by
Martin and Sagan [8].

As a result of the classification of the finite simple groups [4], all t-homogeneous
permutation groups G on sets V with 1 < t < |V | − 1 are known. (We may assume
without loss that t ≤ |V |/2. Without the classification it can be shown that such a
group is, with certain known exceptions, always t-transitive, see [5, 6, 7]; and the list
of the t-transitive groups, which can be found in [1], follows from the classification.)
For our more general concept, the determination of orbit-t-homogeneous groups is
not complete, but we give a number of results in this direction.

A permutation group G acting on a set V is said to be orbit-t-homogeneous,
or t-homogeneous with respect to its orbit decomposition, if whenever S1 and S2

are t-subsets of V satisfying |S1 ∩∆| = |S2 ∩∆| for every G-orbit ∆, there exists
g ∈ G with S1g = S2. Thus, a group which is t-homogeneous in the usual sense is
orbit-t-homogeneous; every group is orbit-1-homogeneous; and the trivial group is
orbit-t-homogeneous for every t. Furthermore, a group is orbit-2-homogeneous if and
only if it is 2-homogeneous on each orbit and, for every α ∈ V , the point stabiliser
Gα acts transitively on each orbit not containing α. It is also clear that a group of
degree n is orbit-t-homogeneous if and only if it is orbit-(n − t)-homogeneous; so,
in these cases, we may assume t ≤ n/2 without loss of generality.
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If two sets S1 and S2 are subsets of V satisfying |S1 ∩ ∆| = |S2 ∩ ∆| for every
G-orbit ∆ then S1 and S2 are said to have the same structure with respect to G
(or just to have the same structure if the group is obvious).

Theorem 4.3.4 of [3] is the following:

Theorem 1. If G and H are orbit-t-homogeneous on V , then so is 〈GH〉.

Young extended the concept of homogeneous groups by investigating the rela-
tionship between permutation groups and partitions [9]. An ordered partition of V ,
P = (P1, P2, . . . , Pk), is said to have shape

|P | = (|P1|, |P2|, . . . , |Pk|) .

A group element g ∈ G is said to map the partition P onto a partition Q =
(Q1, Q2, . . . , Qk) if Pig = Qi for all i. Obviously, a pre-requisite for this is that P
and Q have the same structure with respect to G, i.e. that Pi and Qi have the same
structure for all i. The permutation group G is said to be orbit-λ-transitive if, for
any two partitions of V that have shape λ and the same structure, P and Q say,
there exists some g ∈ G that maps P to Q. A permutation group of degree n is
orbit-t-homogeneous if and only if it is orbit-λ-transitive, where λ = (n− t, t).

The following is a more general version of Theorem 1.

Theorem 2. If G and H are orbit-λ-transitive on a finite set V , then so is
〈GH〉.

Proof outline. We begin by showing that it suffices to prove that there exists a
σ ∈ 〈GH〉 that maps one partition to another when the two partitions differ in
that two elements, x1 and x2, have “swapped” parts. We note that, since these two
elements must lie in the same 〈GH〉-orbit, there must be a finite chain of elements
g1h1 . . . gmhm that map one to the other. We show that we can map one partition
to the other if m = 1 by splitting the proof into three cases based on whether the
intermediate point y = x1g1 lies in the same part of the partition as x1, x2, or
neither of these points. We extend these results by induction to cover all values of
m using similar arguments. Therefore the theorem holds.

Proof. Let P = (P1, P2, . . .) and Q = (Q1, Q2, . . .) be finite partitions of the
finite set V that have the same structure with respect to 〈GH〉 and have shape λ.

We say that a point x ∈ V is “bad” if x ∈ Pi but x /∈ Qi for some integer i.
Hence, the bad points are the points that need to be “moved” in order to map P
to Q. Since V is finite, we may enumerate these bad points x1, ..., xk and assume,
without loss of generality, that x1 ∈ P1 \Q1. Since P has the same structure as Q
with respect to 〈GH〉, there must exist a bad point y ∈ Pi ∩ Q1, for some i 6= 1,
that is in the same orbit as x1. Consider the partition P (1) given by:

(i) P
(1)
1 = (P1 \ {x1}) ∪ {y},

(ii) P
(1)
i = (Pi \ {y}) ∪ {x1},

(iii) P
(1)
j = Pj for all j 6= 1, i.

The partitions P and P (1) differ only in that x1 and y have swapped parts, but
P (1) has at most k − 1 bad points. Hence (by a simple induction), it is easy to see
that there exists a chain of partitions P = P (0), P (1), P (2), . . . , P (l) = Q with the
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same structure and shape such that the only difference between P (j) and P (j+1) is
the swapping of two bad points.

Therefore, in order to prove the theorem it is sufficient to show that there exists
σ ∈ 〈GH〉 such that Pσ = Q when

(i) P1 = S1 ∪ {x1} and P2 = S2 ∪ {x2},
(ii) Q1 = S1 ∪ {x2} and Q2 = S2 ∪ {x1}, and
(iii) Pj = Qj for all j > 2,

for some distinct x1, x2 ∈ V and S1, S2 ⊆ V \ {x1, x2}. Since P and Q have the
same structure with respect to 〈GH〉, x1 and x2 must lie in the same 〈GH〉-orbit
and so there exists an element σ′ = g1h1 . . . gmhm such that x1σ

′ = x2.
Suppose that m = 1 and let y = x1g1. Note that x1 and y lie in the same G-orbit

and that y and x2 lie in the same H-orbit. If y = x1 then x1 and x2 lie in the
same H-orbit and so, as H is orbit-λ-transitive, there exists an element h ∈ H that
maps P onto Q. If y = x2 then x1 and x2 lie in the same G-orbit and so, as G is
orbit-λ-transitive, there exists an element g ∈ G that maps P onto Q. We therefore
assume that y 6= x1, x2. We split the proof into three cases depending on whether
y ∈ P1, y ∈ P2 or y ∈ Pi for some i ≥ 3.

Suppose that y ∈ P1, i.e. S1 = S′1 ∪ {y}, and consider the partition R =
(R1, R2, . . .) where

R1 = S′1 ∪ {x1, x2}, R2 = S2 ∪ {y}, Ri = Pi = Qi for all i > 2.

The partitions P and R have the same structure with respect to H and both have
shape λ. Hence there exists h ∈ H such that Ph = R. Similarly the partitions R
and Q have the same structure with respect to G and so there exists g ∈ G such
that Rg = Q. Hence the result holds.

Suppose that y ∈ P2, i.e. S2 = S′2 ∪ {y}, and consider the partition R =
(R1, R2, . . .) where

R1 = S1 ∪ {y}, R2 = S′2 ∪ {x1, x2}, Ri = Pi = Qi for all i > 2.

The partitions P and R have the same structure with respect to G and both have
shape λ. Hence there exists g ∈ G such that Pg = R. Similarly the partitions R
and Q have the same structure with respect to H and so there exists h ∈ H such
that Rh = Q. Hence the result holds.

If y /∈ P1 ∪P2 then, without loss of generality, it can be assumed that y ∈ P3, i.e.
P3 = S3 ∪ {y} for some S3 ⊆ V . Consider the partitions R = (R1, R2, . . .) where

R1 = S1 ∪ {y}, R2 = S2 ∪ {x2}, R3 = S3 ∪ {x1},
Ri = Pi = Qi for all i > 3,

and T = (T1, T2, . . .) where

T1 = S1 ∪ {x2}, T2 = S2 ∪ {y}, T3 = S3 ∪ {x1},
Ti = Pi = Qi for all i > 3.

Note that both partitions have shape λ. The partitions P and R have the same
structure with respect to G, hence there exists g ∈ G such that Pg = R. The
partitions R and T have the same structure with respect to H, hence there exists
h ∈ H such that Rh = T . The partitions T and Q have the same structure with
respect to G, hence there exists g′ ∈ G such that Tg′ = Q. Hence the result holds
when m = 1.

Assume, as induction hypothesis, that the theorem holds for a given value of m
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and consider the case when σ′ = g1h1 . . . gm+1hm+1. Let y = xg1h1 . . . gmhm. If
y = x1 or y = x2 then the result is obvious, so we will assume that this is not the
case.

Suppose that y ∈ P1, i.e. S1 = S′1 ∪ {y}, and consider the partition R =
(R1, R2, . . .) where

R1 = S′1 ∪ {x1, x2}, R2 = S2 ∪ {y}, Ri = Pi = Qi for all i > 2.

Since there exists an element gm+1hm+1 ∈ 〈GH〉 such that ygm+1hm+1 = x2 there
must exist an element σ1 ∈ 〈GH〉 such that Pσ1 = R. Similarly, since there exists
an element g1h1 . . . gmhm ∈ 〈GH〉 such that x1g1h1 . . . gmhm = y there must exist,
by induction, an element σ2 ∈ 〈GH〉 such that Rσ2 = Q. Hence Pσ1σ2 = Q.

Suppose that y ∈ P2, i.e. S2 = S′2 ∪ {y}, and consider the partition R =
(R1, R2, . . .) where

R1 = S1 ∪ {y}, R2 = S′2 ∪ {x1, x2}, Ri = Pi = Qi for all i > 2.

Since there exists an element g1h1 . . . gmhm ∈ 〈GH〉 such that x1g1h1 . . . gmhm = y
there must exist, by induction, an element σ1 ∈ 〈GH〉 such that Pσ1 = R. Similarly,
since there exists an element gm+1hm+1 ∈ 〈GH〉 such that ygm+1hm+1 = x2 there
must exist an element σ2 ∈ 〈GH〉 such that Rσ2 = Q. Hence Pσ1σ2 = Q.

If y /∈ P1 ∪P2 then, without loss of generality, it can be assumed that y ∈ P3, i.e.
P3 = S3 ∪ {y} for some S3 ⊆ V . Consider the partitions R = (R1, R2, . . .) where

R1 = S1 ∪ {y}, R2 = S2 ∪ {x2}, R3 = S3 ∪ {x1},
Ri = Pi = Qi for all i > 3,

and T = (T1, T2, . . .) where

T1 = S1 ∪ {x2}, T2 = S2 ∪ {y}, T3 = S3 ∪ {x1},
Ti = Pi = Qi for all i > 3.

Since there exists an element g1h1 . . . gmhm ∈ 〈GH〉 such that x1g1h1 . . . gmhm = y
there must exist, by induction, an element σ1 ∈ 〈GH〉 such that Pσ1 = R. Similarly,
since there exists an element gm+1hm+1 ∈ 〈GH〉 such that ygm+1hm+1 = x2 there
must exist an element σ2 ∈ 〈GH〉 such that Rσ2 = T . Lastly, since there exists
an element g1h1 . . . gmhm ∈ 〈GH〉 such that x1g1h1 . . . gmhm = y there must exist,
by induction, an element σ3 ∈ 〈GH〉 such that Tσ3 = Q. (It may be supposed
that such a σ3 cannot be assumed to exist as g1h1 . . . gmhm maps x1 to y rather
than mapping y to x1, and the corresponding element of 〈GH〉 that maps y to x1 is
eh−1

m g−1
m h−1

m−1 . . . g−1
1 e ∈ 〈GH〉 which is too long to apply the inductive assumption.

However, since g1h1 . . . gmhm maps x1 to y, there exists a σ ∈ 〈GH〉 that maps
Qσ = T . Therefore σ3 = σ−1 maps Q to T .) Hence Pσ1σ2σ3 = Q.

Therefore, the theorem holds for σ′ = g1h1 . . . gm+1hm+1 and so, by induction,
for all values of m.

Hence any permutation group G on V has a unique subgroup Ωλ(G) which is
maximal with respect to being orbit-λ-transitive.

Proposition 3. For any permutation group G that acts on a finite set V , and
any shape λ of V , the subgroup Ωλ(G) is normal in G.

Proof. Pick g ∈ G and set H = gΩλ(G)g−1. Let P and Q be any two partitions
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of V with shape λ and the same structure with respect to H. Then Pg and Qg
have shape λ and the same structure with respect to G, therefore there exists an
element σ ∈ Ωλ(G) such that Pgσ = Qg. Hence P (gσg−1) = Q and so H is orbit-
λ-transitive. Since Ωλ(G) is a maximal orbit-λ-transitive subgroup of G, we have
H ≤ Ωλ(G). However |H| = |Ωλ(G)| and so H = Ωλ(G). Therefore Ωλ(G) is normal
in G.

If λ = (λ1, . . . , λk) is a shape of a partition of V then, without loss of generality,
it can be assumed that

λ1 ≥ λ2 ≥ . . . ≥ λk .

Furthermore, if µ = (µ1, . . . , µm) is the shape of another partition of V then a
partial ordering can be defined where µ dominates λ, written λ E µ, if

j∑

i=1

λi ≤
j∑

i=1

µi

for all j (with the convention that λi = 0 for all i > k, and similarly for µ). Hence
the set of shapes of V forms a lattice. A shape µ is said to cover a shape λ if

(1) λ and µ are distinct shapes such that µ dominates λ, and
(2) if ν is a shape with λ E ν E µ then either λ = ν or µ = ν.

Hence, µ covers λ if it is immediately above λ in the shape lattice.

Proposition 4. If µ covers λ in the shape lattice then there exists integers j, k
such that j < k and

µj = λj + 1, µk = λk − 1, µi = λi for i 6= j, k.

Proof. Since µ dominates λ we must have that
l∑

i=1

λi ≤
l∑

i=1

µi

for all l ∈ Z. Let j be the first value for which
j∑

i=1

λi <

j∑

i=1

µi ,

i.e. the least integer such that λi = µi for all 1 ≤ i < j and λj < µj . If µj > λj + 1
then there exists a shape that lies between λ and µ, and so µ does not cover λ.
Hence µj = λj + 1.

If µj+1 > λj+1 then λ does not cover µ (by inspection). Therefore we must have
that µj+1 = λj+1 or µj+1 = λj+1− 1. Moreover, if µj+1 = λj+1 then we must have
either µj+2 = λj+2 or µj+2 = λj+2 − 1, and so on. Let k be the first value such
that µk = λk − 1.

If there exists l > k such that µl > λl then, again, there will exist a shape that
lies between λ and µ in the shape lattice. Hence, µl = λl for all l > k, and so the
proposition holds.

It should be noted that this condition is necessary but not sufficient. The shape
(11, 4) dominates the shape (10, 4, 1) but, despite satisfying the conditions of Propo-
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sition 4, does not cover it as

(10, 4, 1) E (11, 3, 1) E (11, 4) .

Martin and Sagan investigated the properties of orbit-λ-transitive groups in the
specific case when G acts transitively, and termed such groups λ-transitive groups.
In [8], they obtained the following generalisation of the Livingstone-Wagner theorem
[7].

Theorem 5. Let µ dominate λ, and suppose that G ≤ Sn is λ-transitive. Then
G is µ-transitive.

The following, more general, version of the Livingstone-Wagner theorem [7] is
also true:

Theorem 6. Let µ dominate λ and suppose that G ≤ Sn is orbit-λ-transitive.
Then G is orbit-µ-transitive.

Proof. It is enough to prove this in the case where µ covers λ in the shape
lattice, since we can then prove the theorem by induction on the length of the
chain connecting them. By Proposition 4, this means that there exist j < k such
that

µj = λj + 1, µk = λk − 1, µi = λi for i 6= j, k.

Suppose that G is orbit-λ-transitive. Let (Si) and (Ti) be two partitions with
the same structure that have |Si| = |Ti| = µi for all i. We have to show that
some element of g carries the first partition to the second. This follows from the
Martin–Sagan result [8] if G is transitive, so we may suppose not.

Since µj > µk, there is an orbit ∆ of G such that |∆ ∩ Sj | > |∆ ∩ Sk|. Choose
x ∈ ∆∩Sj and let S∗j = Sj \{x}, S∗k = Sk∪{x}, and S∗i = Si for i 6= j, k; construct
T ∗ similarly. Then S∗ and T ∗ have the same structure and are partitions of shape
λ, and so there exists g ∈ G carrying S∗ to T ∗. This element carries Si \∆ to Ti \∆
for all i, so we can assume these sets are equal.

Since |∆ ∩ Sj | > |∆ ∩ Sk|, the shape λ′ of ∆ induced by S∗ is dominated by
the shape µ′ induced by S. Now the stabiliser of all the sets Si \∆ is transitive on
partitions of ∆ of shape λ′ (as G acts transitively on partitions of shape λ). By the
result of Martin and Sagan [8] again, it is transitive on partitions of shape µ′, so
there is an element h fixing all Si \∆ and mapping all Si ∩∆ to Ti ∩∆. So we are
finished.

Corollary 7. Let G be a permutation group acting on a finite set V . The set
of normal subgroups Ωλ(G) (where λ is any shape of V ) form a lattice.

Proof. Suppose λ and µ are shapes of V and that λ is dominated by µ. As
Ωλ(G) is orbit-λ-transitive, it is also orbit-µ-transitive. Therefore Ωλ(G) ≤ Ωµ(G)
as Ωµ(G) is maximal. We may now conclude that the set of subgroups Ωλ(G) forms
a lattice because the set of shapes λ forms a lattice.

Corollary 8. If G is an orbit-t-homogeneous permutation group acting on a
finite set V , where |V | ≥ 2t− 1 and t > 1, then G is orbit-(t− 1)-homogeneous.
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It is clear that if λ = (n) or λ = (n− 1, 1) then Ωλ(G) = G.
For t ∈ {1, 2, . . . , bn/2c}, let Ωt(G) denote Ωλ(G) where λ = (n − t, t). Hence

Ωt(G) is the maximal subgroup of G that is orbit-t-homogeneous.

Theorem 9. Suppose G is a permutation group with degree n that acts on a
set V with d orbits. If λ1 D λ2 D . . . D λk is a chain of shapes of V then

|{Ωλi(G) : 1 ≤ i ≤ k}| ≤ d + 2

Proof. Every shape except (n) and (n− 1, 1) is dominated by (n− 2, 2). Hence,
by Theorem 6, Ωλi

(G) is orbit-2-homogeneous for all 1 ≤ i ≤ k except, possibly,
when i = 1 and i = 2. Now, Ω2(G) acts primitively on its orbits; so, for each
λi E (n− 2, 2), the normal subgroup Ωλi

(G) must act either transitively or trivially
on each Ω2(G)-orbit. Furthermore, if Ωλi

(G) acts trivially on a Ω2(G)-orbit then it
acts trivially on all the Ω2(G)-orbits in the same G-orbit.

Therefore, either Ωλi+1(G) acts trivially on exactly the same G-orbits as Ωλi
(G),

or there exists at least one G-orbit on which Ωλi+1(G) acts trivially and Ωλi(G)
does not. Suppose Ωλi+1(G) acts trivially on exactly the same G-orbits as Ωλi(G).
Then Ωλi+1(G) ≤ Ωλi(G) (by Theorem 6) and, if P and Q are partitions of shape
λi+1 that have the same structure with respect to Ωλi(G), then P and Q have
the same structure with respect to Ωλi+1(G). This means that there exists σ ∈
Ωλi+1(G) ≤ Ωλi(G) such that Pσ = Q. Hence, Ωλi(G) is orbit-λi+1-transitive,
which contradicts the maximality of Ωλi+1(G) unless Ωλi(G) = Ωλi+1(G).

So, if Ωλi+1(G) acts trivially on exactly the same G-orbits as Ωλi(G) then Ωλi+1(G) =
Ωλi(G). Alternatively, if Ωλi+1(G) < Ωλi(G) then there must exist at least one G-
orbit on which Ωλi+1(G) acts trivially and Ωλi(G) does not. If Ωλi(G) acts trivially
on every G-orbit then Ωλi(G) = 1G. Hence the result holds.

This means that in the case of orbit-t-homogeneous groups things are, in fact,
quite restricted.

Proposition 10. If G is transitive then one of the following holds:
(a) Ω1(G) = G, Ωt(G) = 1G for all 1 < t ≤ n/2.
(b) There is a non-trivial normal subgroup NEG such that Ω1(G) = G, Ωt(G) = N

for all 1 < t ≤ n/2.
(c) There is a non-trivial normal subgroup N E G and an integer m > 1 such that

Ω1(G) = G, Ωt(G) = N for 1 < t ≤ m, and Ωt(G) = 1G for all m < t ≤ n/2.

Proof. Set N = Ω2(G). We note that N could equal G, 1G or any proper normal
subgroup of G. If N = 1G then case (a) applies by Theorem 6, so we assume that
N 6= 1G. Let t be any integer such that 2 < t ≤ n/2. Ωt(G) < N by Theorem 6 and,
as noted in the proof of Theorem 9, Ωt(G) must act either transitively or trivially
on each N -orbit. If it acts trivially on any N -orbit, then it must act trivially on
the single G-orbit and so Ωt(G) = 1G. If it acts transitively on every N -orbit, then
N is orbit-t-homogeneous and N = Ωt(G). Hence, either case (b) or case (c) must
apply.

As a series of examples, consider a group H that acts on a set of n points (n ≥ 2),
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and the wreath product G = Wr(H, C2) = (H ×H) ·C2 that acts on a set V of 2n
points in the natural way.

(1) If H ∼= Cn then Ω1(G) = G and Ωt(G) = 1 for all 1 < t ≤ n.
(2) If H ∼= Sn then Ω1(G) = G and Ωt(G) = H ×H for all 1 < t ≤ n.
(3) If H is u-homogeneous but not (u + 1)-homogeneous, for 1 < u < n, then

Ω1(G) = G, Ωt(G) = H × H for 2 ≤ t ≤ u, and Ωt(G) = 1 for u < t ≤ n.
Such groups exist only for u ≤ 5 (by the main result of Livingstone and
Wagner and the classification of t-transitive groups).

For intransitive groups, things are not so restricted, as the examples in the fol-
lowing remarks show.

Remark 11. A permutation group G with two orbits V1 and V2 is orbit-2-
homogeneous if and only if G is 2-homogeneous on each orbit and transitive on
V1 × V2 (equivalently, the permutation characters of G on V1 and V2 are different).
There are many examples of such groups. In particular, both, one, or neither of the
actions of G on V1 and V2 may be faithful, as the following examples show:

(i) PSL(2, 7), with orbits of size 7 and 8;
(ii) PΓL(2, 8), with orbits of size 3 and 28;
(iii) the direct product of two 2-homogeneous groups.

Remark 12. We can determine the degree of orbit-homogeneity of a permu-
tation group all of whose orbits have size 2, as follows. Let G be such a group,
with orbits ∆1, . . . , ∆m. To each element g ∈ G, we associate a binary m-tuple
c(g) = (c1, . . . , cm), where ci = 0 if g fixes ∆i pointwise, and ci = 1 otherwise. Let
C(G) = {c(g) : g ∈ G}. The fact that G is a group immediately implies that C(G)
is additively closed, that is, C(G) is a linear binary code.

The strength of a code C of length m is the largest value t such that, given any
t distinct coordinates i1, . . . , it and any t symbols a1, . . . , at, there is a constant
number α (depending on t but not on the coordinates or symbols) of codewords c
such that cij = aj for j = 1, . . . , t. It is easy to see that, if this holds for t, then
it holds for any smaller natural number. In other terminology, the condition says
that C is an orthogonal array of strength t and index α.

If C is a linear code, then the set of such codewords, if non-empty, is a coset of a
subspace of C; so it is enough to require that the number of codewords is non-zero
for any choice of coordinates and symbols.

Proposition 13. Let G be a permutation group having all its m orbits of size 2.
Suppose that t ≤ m.Then G is orbit-t-homogeneous if and only if the code C(G)
defined above has strength at least t.

Proof. Suppose first that C(G) has strength at least t. Consider two t-sets S1

and S2 with the same structure. Suppose that |S1 ∩ ∆i| = |S2 ∩ ∆i| = 1 for
i = i1, . . . , is, where s ≤ t. Now an element g ∈ G maps S1 to S2 if and only if the
corresponding codeword c = c(g) has cij = aj for j = 1, . . . , s, where

aj =
{ 0 if S1 ∩∆ij = S2 ∩∆ij ,

1 otherwise.
Such an element exists by the case assumption.

Conversely, suppose that G is orbit-t-homogeneous, and let coordinates i1, . . . , it
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and symbols a1, . . . , at ∈ {0, 1} be given. Choose t-sets S1, S2 containing one point
from each orbit ∆ij

for j = 1, . . . , t, where the chosen points of Oij
are the same

if aj = 0 and different if aj = 1. By orbit-t-homogeneity, the set of elements g
which carry S1 to S2 is non-empty and so is a coset of a subgroup of G; so its
size is independent of the choice of ij and aj . These elements satisfy cij = aj for
j = 1, . . . , t, where c = c(g); and so C(G) has strength at least t.

According to a theorem of Delsarte [2], the strength of a linear code C is one
less than the minimum weight of the dual code C⊥. So it is easy to construct
permutation groups with any desired degree of orbit-homogeneity, from linear codes
with sufficiently large minimum weight.

Remark 14. If G has all orbits of size 3, then G is orbit-t-homogeneous if and
only if its (normal) Sylow 3-subgroup is. The criterion for this is almost identical
to that in Remark 12, in terms of ternary codes. Also, if G has all orbits of size 2
or 3, then G is orbit t-homogeneous if and only if the groups induced on the union
of orbits of each size are. We do not give details.

Remark 15. The situation for orbits of size 4 or more is a bit more complicated.
We can give a partial description of the orbit-4-homogeneous groups as follows.

Proposition 16. Let G be orbit-4-homogeneous of degree at least 8, and let H
be the third derived group of G. Then H is a direct product of simple groups taken
from the list An (n ≥ 5), Mn (n = 11, 12, 23, 24), and PSL(2, q) (q = 5, 8, 32), each
factor acting transitively on one G-orbit and fixing all the others pointwise.

Proof. The 4-homogeneous groups which are not 4-transitive have been classi-
fied by Kantor [5], and the list of 4-transitive groups follows from the classification
of finite simple groups. All of them have simple derived groups in the list in the
proposition. Groups of degree at most 4 have derived length at most 3. By inspec-
tion, a group on the above list cannot act non-trivially on two different orbits in an
orbit-4-homogeneous group.

There remains some subtlety in the structure of G. For example:
– The Proposition gives no information about orbits of size at most 4. In partic-

ular, the examples described in Remarks 2 and 3 are completely invisible from
this point of view.

– Any group G lying between a direct product
∏r

i=1 Sni of symmetric groups
and its derived group

∏r
i=1 Ani (with ni ≥ 5 for all i) is orbit-4-homogeneous.

We can add orbits of length 2 on which G/
∏

Ani acts as in Remark 1.
– The group PΓL(2, 8), acting with orbits of size 3 and 9, is orbit-4-homogeneous.

The transitivity on 4-sets containing one point from the orbit of length 3 follows
from the 3-homogeneity of PSL(2, 8).

Remark 17. The above Proposition fails for orbit-3-homogeneous groups. The
groups S6 (with two inequivalent orbits of size 6) and M12 (with two inequivalent
orbits of size 12) are orbit-3-homogeneous but not orbit-4-homogeneous. Other
examples include (Cr

2)m ·GL(r, 2), for m, r ≥ 2, with m orbits of size 2r.
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Remark 18. Let Gs be s-homogeneous but not (s + 1)-homogeneous on Vs for
1 ≤ s ≤ 5; let G = G1 × . . .×G5, acting on V = V1 ∪ . . . ∪ V5. Then

Ωt(G) = Ωt(G1)×
5∏

i=t

Gi .
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