
Broadcast Encryption with Multiple Trust
Authorities

Kent D. Boklan1, Alexander W. Dent2, and Christopher A. Seaman3

1 Department of Computer Science,
Queens College, City University of New York, USA

2 Information Security Group,
Royal Holloway, University of London, UK

3 Department of Mathematics,
Graduate Center, City University of New York, USA

Abstract. In this paper we extend the notion of hierarchical identity-
based encryption with wildcards (WIBE) from the domain of a single
Trusted Authority (TA) to a setting with multiple, independent Trusted
Authorities each with their own WIBE. In this multi-trust-authority
WIBE environment, a group of TA’s may form coalitions, enabling se-
cure communication across domains. These coalitions can be created in
an ad-hoc fashion and membership of one coalition does not give a trust
authority any advantage in decrypting a ciphertext for a different coali-
tion. This allows the broadcast of confidential messages to large groups
of users within a coalition with a single ciphertext. We provide a full
syntax and security model for multi-trust-authority WIBEs, and give a
constructions based on the Boneh-Boyen WIBE scheme for both passive
and active attackers.

1 Introduction

Identity-based encryption [12] is a type of public-key encryption in which a user’s
public key is set to be equal to some bitstring which uniquely identifies them
within some context. This removes the need for costly and complex public-key
infrastructures. Since a user’s public key can now be deduced from the user’s
identity, the user’s private decryption key can only be produced by a trusted
authority (TA) with some special “trapdoor” information. This TA will release
the private key to a user in the TA’s trust domain after that user has proven
its identity to the TA. A hierarchical identity-based encryption (HIBE) scheme
[9] is an extension of identity-based encryption in which identities are arranged
in a tree structure with the trust authority at the root. Users are associated
with nodes in the tree and any user that has been issued with a private key can
deduce a private key for any subordinate user in the tree structure. This reduces
the key management requirements for the TA in a manner similar to the use of
certificate chains in a public-key infrastructure.

A WIBE scheme is a HIBE scheme that allows one-to-many communication
within the domain of the trust authority [1]. In a WIBE scheme, encryption is



performed with respect to a pattern of bitstrings and wildcards, and a ciphertext
can only be decrypted by a user whose identity matches the pattern at every
non-wildcard level. This allows broadcast encryption to large numbers of users si-
multaneously. However, encryption is still restricted to a single trust domain. We
extend the concept of a WIBE to a situation with multiple trusted authorities.
In a multiple-trust-authority WIBE (MTA-WIBE) scheme, trust authorities can
communicate to form coalitions that enable broadcast encryption across mul-
tiple trust domains. This allows simple broadcast encryption to large numbers
of recipients in multiple trust domains. Our scheme model has the following
properties:

– Trust authorities can initially implement independent instances of the MTA-
WIBE scheme (without communication with other trust authorities).

– Trust authorities form coalitions through a two-stage process in which trust
authorities first exchange public messages and then broadcast public “key
update” messages to users in their trust domain. These key update messages
allow users to form coalition decryption keys (based on their existing WIBE
decryption keys) and so decrypt MTA-WIBE ciphertexts.

– Encryption of a message for a specific coalition is achieved using only the
public parameters of the trust authorities in the coalition and does not re-
quire the sender to obtain extra information about the coalition.

– Messages are encrypted for a given coalition and under a given pattern. The
resulting ciphertext can only be decrypted by users whose identities match
the pattern and whose trust authority is currently in the coalition.

– Coalitions are secure in the sense that membership of one coalition does not
allow a trust authority to deduce information about a message encrypted for
a coalition which does not include that trust authority.

We provide a full syntax and security model for an MTA-WIBE scheme. We
give a selective-identity instantiation based on the Boneh-Boyen WIBE scheme
[1, 4]. We also give a generic method to transform a passively secure scheme
into an actively secure scheme via a novel implementation of the Boneh-Katz
transform [5]. This is the most efficient generic transform for creating IND-CCA2
secure WIBEs or MTA-WIBEs from IND-CPA WIBEs or MTA-WIBEs in the
literature. (The Boneh-Katz transform’s application to the construction of secure
WIBEs may be of independent interest.)

Usage Scenarios We believe that MTA-WIBEs are useful in a variety of con-
texts. We believe that the uses of MTA-WIBEs by organisations involved in a
joint project are obvious. However, we also believe that there are number of more
unusual usage scenarios. For example, suppose a number of companies produce
sensors for use in an ad-hoc network (including, e.g., “IBM”) and suppose that
these sensors can be classified according to the function they perform (including,
e.g., “climate sensor”). We assume that there is a common naming structure for
these sensors (e.g. (MANUFACTURER, SENSOR TYPE, PROJECT)). If the
manufacturers agree to form a coalition, then a message encrypted using the
coalition parameters and the pattern (*, “climate sensor”, “Project Intercept”)



could be decrypted by any climate sensor on Project Intercept. Alternatively,
a message encrypted using the pattern (“IBM”, “climate sensor”, *) can only
be decrypted by IBM’s climate sensors. This provides a method to address all
sensors within a project (for project information distribution) or to address all
sensors produced by an individual manufacturer (e.g. for software patching).

Related Work Several researchers have considered the problem of developing
broadcast or multi-receiver encryption schemes based on HIBE-like encryption
schemes. The idea appears to have originated in the literature with the work
of Dodis and Fazio [8]; other examples were given by Abdalla et al. [2] and
Chatterjee and Sarkar [7, 10]. These schemes concentrate on either sending a
message to a (small) named set of users or to all users except for a (small) named
set of revoked users. None of these schemes support multiple trust authorities
or the “pattern-based” encryption capability provided by a WIBE. Our work
extends the concept of a “pattern-based” encryption system of Abdalla et al. [1]
to a situation with multiple trust authorities.

Other researchers have considered the question of developing IBE systems
with multiple trusted authorities. Paterson and Srinivasan [11] constructed an
IBE scheme which supported multiple trust authorities in a way which makes it
infeasible for an attacker to determine which trust authority’s public parameters
was used to form the ciphertext - i.e. the ciphertext preserves the anonymity of
the trust authority. However, the Paterson and Srinivasan scheme does not allow
trust authorities to form trust coalitions. A scheme of Boklan et al. [3] allows
trust authorities to cooperate to form trust coalitions, in the sense that within
the coalition a private key issued by TAi for an identity ID can be translated into
a private key issued by TAj for the same identity. However, in order to achieve
this functionality, the scheme requires that the coalition trust authorities setup
their master private keys simultaneously. Furthermore, every trust authority can
deduce the master private key of every other trust authority. This is clearly a
disadvantage in any setting where the trust authorities share anything less than
complete trust in each other. Unlike our scheme, no prior scheme simultane-
ously supports multiple trust authorities, secure ad-hoc coalitions, hierarchical
identity-based encryption, and one-to-many communication.

Trivial Solutions We note that the coalition functionality is only useful for
broadcast encryption across the entire coalition (i.e. when the message is to be
sent to a set of users which include members of distinct organisations). Broad-
cast encryption to a set of users contained within a single organisation can be
achieved through the use of that organisation’s existing WIBE. Since organi-
sations must communicate before setting up a coalition, one could implement
a trivial solution in which the organisations generate an independent WIBE to
represent the coalition. Broadcast encryption across the coalition can then be
achieved using this WIBE. This scheme would offer similar functionality to our
scheme but has significant disadvantages:

– A sender (in possession of the public parameters for all members of the
coalition) may not be able to deduce the public parameters for the coali-



tion. In our scheme, knowledge of the public parameters for individual trust
authorities allows cross-domain broadcast encryption.

– In the trivial scheme, all users within a trust domain must obtain new coali-
tion keys from their TA individually. This requires a large amount of secure
communication between the TA and the users. Our scheme allows users to
deduce coalition decryption keys from a (short) publicly-broadcast “key up-
date” message from the TA. This simplifies the key management architecture
and massively reduces the workload of the TA.

2 Multiple-trust-authority WIBEs

Throughout the paper we will use standard notation for algorithms and assign-
ment – see Appendix A.1.

2.1 Syntax

A Trusted Authority is the root of a domain of trust with responsibilities over the
namespace of its organization. In general we will refer to a Trusted Authority TA
as a hierarchy of identities of the form ID = (ID0, ID1, . . . , IDk) with the same
first identity (ID0 = TA) and maximum depth of L. Given a population of TA’s
U = {TA1,TA2, . . . ,TAn} we define a coalition C = {TAa,TAb, . . . ,TA`} ⊆
U . We define a pattern to be a vector of identities and wildcards, i.e. P =
(P0, . . . , Pk) where Pi ∈ {0, 1}∗ ∪ {∗} for 1 ≤ i ≤ k. We say that an identity
ID = (ID0, . . . , IDk) matches a pattern P = (P0, . . . , Pk′), written ID ∈∗ P , if
k ≤ k′ and Pi ∈ {ID i, ∗} for all 0 ≤ i ≤ k. For a pattern P = (P0, . . . , Pk), we
define W (P ) to be the set of wildcard levels W (P ) = {0 ≤ i ≤ k : Pi = ∗} and
W̄ (P ) to be the set of non-wildcard levels W̄ (P ) = {0 ≤ i ≤ k : Pi 6= ∗}.

A multi-trust-authority WIBE (MTA-WIBE) consists of a number PPT al-
gorithms. The following algorithms may be used by a TA:

– Setup: This algorithm produces public parameters used by all trust au-
thorities. This is written param $← Setup(1k). These public parameters are
assumed to be an implicit input to all other algorithms.

– CreateTA: This algorithm creates the master public/private keys for a trust
authority with a particular name (“TAi”). The algorithm takes as input
the proposed name for the trusted authority (“TAi”) and outputs a master
key-pair (pk i, sk i), written (pk i, sk i)

$← CreateTA(“TAi”).
– CoalitionBroadcast: Once a set of trust authorities agree to setup a coali-

tion between them, each trust authority runs this algorithm to produce the
information which allows the other trust authorities in the coalition to pro-
duce coalition keys for the members of their hierarchy. For some coalition C ⊆
U containing TAi, trust authority TAi uses its secret key and the public keys
of participating authorities to generate public parameters specific to every
other authority. This is written as Wi

$← CoalitionBroadcast(TAi, ski, C, PK),
where PK = {pk j : TAj ∈ C} is the set of master public keys in the coalition



and Wi = {wi,j : TAj ∈ C \ TAi} is the set of key update elements. Each
wi,j is sent from TAi to TAj through a public channel.

– CoalitionUpdate: After every member TAi of the coalition has provided
a message wi,j to TAj , trust authority TAj uses this algorithm to combine
those messages to allow creation of coalition-specific secret keys. It outputs
a message vj to be (publicly) broadcast to every member of TAj ’s hierarchy
(who then run the CoalitionExtract algorithm). This is written vj

$←
CoalitionUpdate(TAj , skj , C, PK, Ŵj) where PK = {pk i : TAi ∈ C} and
Ŵj = {wi,j : TAi ∈ C \ TAj} is the coalition parameters received by TAj .

The security of the scheme does depend upon some user running the Setup
algorithm correctly, deleting any internally-used variables, and widely distribut-
ing the result. Everyone must trust this user has not abused its privileges. This
is a common problem in situations where several users have to share common
parameters. In most scenarios, simple techniques can be used to provide some
measure of assurance of the security of the common parameters, e.g. independent
elements may be created by hashing publicly known, random data, such as as-
tronomical signals. These techniques are considered out of scope for this paper,
although the security proofs could be trivially altered to include this phase.

We also note that our security model allows the coalition broadcast mes-
sages wi,j and key update message vj to be broadcast publicly. The key update
message vj may be publicly broadcast to all users, but we require that this mes-
sage is sent via an integrity protected/origin authenticated channel. The wi,j

messages exchanged between TA’s do not require integrity protection or origin
authentication. We now describe the algorithms required by the individual users.

– Extract: This algorithm is used by an individual to generate private keys
for their subordinates (entities on the level below them in the hierarchi-
cal structure). The keys generated are specific to the TA’s WIBE, although
they may later be adjusted for use in a coalition environment. For entity
ID = (ID0, ID1, . . . , IDk) extracting a private key for subordinate ID† =
(ID0, ID1, . . . , IDk, ID ′) the algorithm outputs dID†

$← Extract(ID , dID , ID ′).
– CoalitionExtract: Users in a trust authority’s hierarchy may use this algo-

rithm to adapt their TA-specific WIBE private key for use within a coalition.
To accomplish this their TA, TAi, must provide an adjustment parameter vi

to be combined with the user’s private key dID . A user generates its coalition
key as cID ← CoalitionExtract(dID , vi).

– Encrypt: This algorithm can be used by an individual to encrypt a message
m to any individual whose identity matches a pattern P in the coalition C.
This is computed as C

$← Encrypt(C,PK , P,m) where PK = {pki : TAi ∈
C}. We assume that if the message is encrypted for users in a single hierarchy
(i.e. P0 6= ∗) then the coalition parameters PK used to encrypt the message
will just be the parameters of the (single) trust authority P0 (i.e. C = {P0}
when ID0 = P0). The coalition C should contain the identities of multiple
TAs only when a message is to be sent to users in each TA’s hierarchy (i.e
|C| ≥ 2 if and only if ID0 = ∗).



– Decrypt: This algorithm can be used to decrypt a ciphertext C under a
coalition key cID and outputs either a message m or the error symbol ⊥.
We write this operation as Decrypt(ID , cID , C). If no coalition is currently
defined, then cID ← dID .

It is, of course, possible to extend the MTA-WIBE syntax so that coalition
update values vj are produced after a protocol interaction between trust author-
ities in the coalition, but we use the simpler broadcast case as it is sufficient
for our instantiation. We require that the scheme is correct in the obvious sense
that decryption “undoes” encryption for correctly generated trust authorities
and coalitions.

2.2 Security Model

We provide a security model for an MTA-WIBE. We begin by defining a selective-
identity sID-IND-CPA model. This is a game played between a PPT attacker
A = (A0,A1) and a hypothetical challenger: (1) the attacker runs (C∗, P ∗, ω) $←
A0(1k) where C∗ is the list of TA identifiers in the challenge coalition, P ∗ is
the challenge pattern, and ω is state information; (2) the challenger generates
param $← Setup(1k) and (pk i, sk i)

$← CreateTA(TAi) for all TAi ∈ C∗; (3) the
attacker outputs a bit b′ $← A1(param,PK , ω) where PK ← {pk i : TAi ∈ C∗}.
During A1’s execution, it may access the following oracles:

– CreateTA(TA): The oracle computes (pk , sk) $← CreateTA(TA) and returns
pk . This oracle can only be queried for values of TA that do not already
have an associated public key. This TA is labelled “honest”. (All TA’s in C∗
are also labelled “honest”.)

– SubmitTA(TA, pk): This oracle associates the identity TA with the public
key pk . It is used to model rogue TAs. This oracle can only be queried for
values of TA that do not already have an associated public key. This TA is
labelled “corrupt”.

– CoalitionBroadcast(TA, C): This oracle computes the coalition key update
set W

$← CoalitionBroadcast(TA, sk , C,PK ) where TA is “honest”, sk is
the private key associated with TA, C is a coalition containing TA, and PK
is the set of public keys for trust authorities in C. The oracle returns the set
W = {wj : TAj ∈ C \ TA}.

– CoalitionUpdate(TA, C, Ŵ ): The oracle computes the adjustment parame-
ter v

$← CoalitionUpdate(TA, sk , C,PK , Ŵ ) where TA is honest, sk is the
private key associated with TA, C is a coalition containing TA, PK is the
set of public keys for C, and Ŵ = {wi : TAi ∈ C \ TA} is the set of key
update messages that purport to be from TAi. The oracle returns the value
v. Note that we do not require that Ŵ corresponds to the elements returned
by CoalitionBroadcast.

– Corrupt(ID): The oracle returns dID for the identity ID . Note that if ID =
TA then this method returns the private key sk associated with the trust



authority TA. This oracle can only be queried for situations where TA is
“honest”. If ID = TA then TA is labelled “corrupt”.

– Encrypt(m0,m1): The oracle returns C∗ $← Encrypt(C∗,PK , P ∗,mb) where
PK is the set of public keys associated with trust authorities TA ∈ C∗ and
b

$← {0, 1}. This oracle can only be queried once and only if |m0| = |m1|.
The attacker is forbidden from corrupting an identity ID ∈∗ P ∗ under a trust
authority TA ∈ C∗. The attacker’s advantage is defined to be

AdvsID
A (k) = |Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]| .

We define extended notions of security in the usual way. The IND-CPA notion
of security is identical to the sID-IND-CPA notion of security except that there
is no A0 algorithm. The algorithm A1 takes 1k as input and the encryption
oracle changes so that it works as follows:

– Encrypt(C∗, P ∗,m0,m1): The oracle returns C∗ $← Encrypt(C∗,PK , P ∗,mb)
where PK is the set of public keys associated with trust authorities TA ∈ C∗
and b

$← {0, 1}. This oracle can only be queried once, only if |m0| = |m1|,
and only on coalitions C∗ where every TA ∈ C∗ is honest.

The IND-CCA2 notion of security is identical to the IND-CPA notion of security
except that A1 has access to a decryption oracle:

– Decrypt(C, ID , C): This oracle checks whether the coalition key cID has been
defined for the coalition C (via a CoalitionUpdate oracle query). If not, the
oracle returns ⊥. Otherwise, the oracle returns Decrypt(ID , cID , C). This
oracle can only be queried on identities for which the trust authority TA =
ID0 is honest.

The attacker is forbidden from submitting (C∗, ID , C∗) to the decryption oracle
for any identity ID ∈∗ P ∗.

We note that this model allows for “rogue TAs” whose parameters are gener-
ated maliciously, rather than by the CreateTA oracle, as there is no requirement
that C contain TA identities generated by the CreateTA oracle except for the
coalition submitted to the Encrypt oracle. The SubmitTA oracle allows the at-
tacker to define a public key for a rogue TA although this public key is only used
by the CoalitionBroadcast oracle. We also note that the inability to query an
oracle to obtain the coalition key cID does not represent a weakness in the model
(assuming that cID and dID are secured in a similar manner) as cID can always
be formed from dID and the public value v.

3 Boneh-Boyen MTA-WIBE

We present a selective-identity IND-CPA secure MTA-WIBE based on the Boneh-
Boyen MTA-WIBE. The scheme is given in Figure 1. Our scheme makes use
of two prime-order groups (G,GT ) and an efficiently computable bilinear map



Setup(1k):

g1, g2, ui,j
$← G∗ for 0 ≤ i ≤ L, j ∈ {0, 1}

param ← (g1, g2, u0,0, . . . , uL,1)
Return param

CreateTA(TA):

α
$← Zp

pk ← gα
1 ; sk ← gα

2

Return (pk , sk)

CoalitionBroadcast(TA, sk , C,PK ):
For each TAj ∈ C:

rj
$← Zp

wj,0 ← gα
2 (u0,0 · uTAj

0,1 )rj

wj,1 ← g
rj

1

wj ← (wj,0, wj,1)
W ← {wj : TAj ∈ C \ {TA}}
Return W

CoalitionUpdate(TA, sk , C,PK , Ŵ ):

Parse Ŵ as {wj : TAj ∈ C}
Parse wj as (wj,0, wj,1)
v0 ←

∏
TAj∈C\{TA} wj,0

v1 ←
∏

TAj∈C\{TA} wj,1

v ← (v0, v1)
Return v

CoalitionExtract(dID , v):
Parse v as (v0, v1)
Parse dID as (h, a0, . . . , ak)
h′ ← h · v0

a′0 ← a0 · v1

Return cID ← (h′, a′0, a1, . . . , ak)

Extract(ID , dID , ID ′):
If ID = ε then

r0, r1
$← Zp

h ← gα
2 (u0,0 · uID0

0,1 )r0(u1,0 · uID1
1,1 )r1

a0 ← gr0
1 ; a1 ← gr1

1

Return (h, a0, a1)
Else

Parse dID as (h, a0, . . . , ak)

rk+1
$← Zp

h′ ← h(uk+1,0u
ID′
k+1,1)

rk+1

ak+1 ← g
rk+1
1

Return (h′, a0, . . . , ak+1)

Encrypt(C,PK , P, m):

t
$← Zp

C1 ← gt
1

For each i ∈ W (P ) set C2,i ← (ut
i,0, u

t
i,1)

For each i ∈ W̄ (P ) set C2,i ← (ui,0 · uPi
i,1)

t

C3 ← m · e(∏TAj∈C pk j , g2)
t

Return (C1, C2,1, . . . , C2,`, C3)

Decrypt(ID , cID , C):
Parse cID as (h, a0, . . . , a`)
Parse C as (C1, C2,1, . . . , C2,`, C3)
For each i ∈ W (P ) then

Parse C2,i as (ũ0, ũ1)

C′2,i ← ũ0 · ũIDi
1

For each i ∈ W̄ (P ) set C′2,i ← C2,i

m′ $← C3 ·
∏`

i=1 e(ai, C
′
2,i)/e(C1, h)

Return m′

Fig. 1. The Boneh-Boyen MTA-WIBE. Recall that any identity ID has ID0 = TA.
The Extract algorithm differentiates between initial key extraction by the TA and
hierarchical extraction by a user. The Decrypt algorithm assumes that the depth of
the decryption key and the depth of the ciphertext are equal. If the depth of the
decryption key is shorter than the depth of the ciphertext, then the user can extract a
key of a correct length and use the decryption algorithm.

e : G × G → GT . We assume that the size of the prime p is determined by the
security parameter k.

We prove this algorithm secure in the sID-IND-CPA security model. The
intuition behind the proof is that any coalition of trust authorities can be viewed
as an extended hierarchy with a “ghost” trust authority at the top level. Each



actual trust authority is represented as a first-level identity under this ghost TA
and, through communication with the other trust authorities in the coalition, is
able to determine a private key for their first-level identity under the ghost TA.
More specifically, if we consider a coalition C = {TA1, . . . ,TAn} in which each
TA has a private key sk i = gαi

2 , then the ghost TA will have a private key g
∑

αi

2 .
Upon forming the coalition, the trust authority TAj receives the messages

wi,j,0 ← gαi
2 (u0,0 · uTAj

0,1 )ri wi,j,1 ← gri
1

from each TAi ∈ C \ {TAj}. This allows TAj to form the private key

h ← g
∑

i αi

2 (u0,0 · uTAj

0,1 )
∑

i 6=j ri a1 ← g
∑

i 6=j ri

1

which is precisely the key that would be obtained if the ghost TA were to dis-
tribute a private key to the identity TAj . The security of the multi-TA scheme
then essentially follows from the security of the single-TA WIBE scheme, al-
though care must be taken to show that the broadcast messages wi,j and vi do
not leak information about the private keys to the attacker.

We prove this theorem in two steps. The first step removes the wildcards to
form an sID-IND-CPA secure MTA-HIBE (i.e. a WIBE scheme which doesn’t
support wildcards).

Theorem 1. Suppose that there exists a PPT attacker A against the sID-IND-
CPA security of the multi-TA Boneh-Boyen WIBE with advantage AdvWIBE

A (k).
Then there exists a PPT attacker B against the sID-IND-CPA security of the
multi-TA Boneh-Boyen HIBE with advantage AdvHIBE

B (k) = AdvWIBE
A (k).

Theorem 1 is proven using the projection technique of Abdalla et al. [1]. For
completeness, the proof is given in Appendix B. The more interesting step is to
show that the HIBE is secure. This is shown relative to the DBDH assumption:

Definition 1. Let (G,GT ) be groups of cyclic groups of prime order p(k) with
a bilinear map e and let g be a generator of G. Let Dk be the distribution
x ← (g, ga, gb, gc, e(g, g)abc) for a, b, c

$← Zp. Let Rk be the distribution x ←
(g, ga, gb, gc, Z) for a, b, c

$← Zp and Z
$← GT . An algorithm A has advantage

AdvDBDH
A (k) = |Pr[A(x) = 1 |x $← Dk]− Pr[A(x) = 1 |x $← Rk]| .

The DBDH assumption holds if every PPT attacker has negligible advantage.

Theorem 2. Suppose that there exists a PPT attacker A against the sID-IND-
CPA security of the Boneh-Boyen HIBE that makes at most qK Corrupt oracle
queries and has advantage AdvHIBE

A (k). Then there exists a PPT algorithm B that
solves the DBDH problem with advantage AdvBDDH

B (k) ≥ AdvHIBE
A (k)/2− qK/2p.

Proof We directly describe the algorithm B against the DBDH problem:

1. B receives the input (g, ga, gb, gc, Z).



2. B runs A0 to obtain the challenge coalition TA∗ = {TA∗1, . . . ,TA∗n∗} and the
challenge identity ID∗ = (ID∗

0, . . . , ID
∗
`∗) where ID∗

0 = TA∗1 (wlog).
3. If `∗ < L then B randomly generates ID∗

`∗+1, . . . , ID
∗
L

$← Zp.
4. B computes the challenge parameters

g1 ← g g2 ← gb ki,j , αj
$← Z∗p for 0 ≤ i ≤ L, j ∈ {0, 1}

pk1 ← ga/g
∑n∗

j=2 αj pkj ← gαj and sk j ← (gb)αj for 2 ≤ j ≤ n∗

ui,0 ← g
ki,0
1 · (ga)−ID∗i ki,1 ui,1 ← (ga)ki,1 for 0 ≤ i ≤ L

5. B runs A1 on the input (g1, g2, u0,0, u0,1, . . . , uL,0, uL,1,PK ) where PK =
(pk1, . . . , pkn∗). If A1 makes an oracle query, then B answers queries as
follows:
– CreateTA: B generates αTA

$← Zp and returns the public key gαTA
1 , while

storing αTA for future use.
Note that B knows the private key for all TAs except TA∗1. Hence, we only
have to show how to simulate the remaining oracles for TA1.
– SubmitTA: B ignores any queried made to this oracle (as the Boneh-Boyen

scheme does not make use of public key values in the CoalitionBroadcast
algorithm and the challenge coalition C∗ must be entirely honest).

– Corrupt: Suppose A requests the decryption key for (TA∗1, ID1 . . . , ID`).
If ID is not ancestor of (TA∗1, ID

∗
1, . . . , ID

∗
L), then there exists an index

1 ≤ µ ≤ ` such that IDµ 6= ID∗
µ. B generates r1, . . . , rµ

$← Zp and
computes the decryption key (h, a0, . . . , aµ) for (ID0, . . . , IDµ) as

h ← g
− kµ,0

kµ,1(IDµ−ID∗µ)

2 · g−
∑n∗

j=2 αj

2 ·
µ∏

i=0

(
ui,0 · uIDi

i,1

)ri

ai ← gri
1 for 0 ≤ i ≤ µ− 1

aµ ← g
− 1

kµ,1(IDµ−ID∗µ)

2 · grj

1 .

B computes the decryption key for ID using the key derivation algorithm
and returns the result. If no such µ exists (i.e. if ID is an ancestor of
(TA∗1, ID

∗
1, . . . , ID

∗
L) then B aborts .

– CoalitionBroadcast: Suppose thatA requests that TA∗1 sends messages
to the coalition C. B generates r1

$← Zp and computes for each TAi ∈
C \ {TA∗1}

wi,0 ← g
− k1,0

k1,1(TAi−TA∗1)

2 · g−
∑n∗

j=2 αj

2 ·
(
u1,0 · uTAi

1,1

)r1

wi,1 ← g
− 1

k1,1(TAi−TA∗1)

2 gr1
1

and sets wj ← (wj,0, wj,1). B returns the list {wj : TAj ∈ C \ {TA∗1}}.
– CoalitionUpdate: The output of this oracle can be returned directly as

it is independent of any private key values.



– Encrypt: Suppose A1 makes the oracle query on two equal-length mes-
sages (m0,m1). B chooses a bit b

$← {0, 1} and computes the ciphertext

C∗ ← (gc, (gc)k1,0 , . . . , (gc)k`∗,0 , mb · Z) .

A1 terminates with the output of a bit b′.
6. If b = b′ then B outputs 1. Otherwise, outputs 0.

The Corrupt oracle works perfectly provided that A1 does not abort, which
can only occur if A1 makes query on an identity ID which is not an ancestor
of ID∗ but is an ancestor of (ID∗

0, . . . , ID
∗
L). This can only occur if ` > `∗ and

ID`∗+1 = ID∗
`∗+1, which occurs with probability 1/p as this value is information

theoretically hidden from A. Hence, the probability that this does not occur
in the entire execution of A is qK/p where qK is the number of queries to the
Corrupt oracle. We note that the corrupt oracle gives correct responses for
queries since

sk1

(
uj,0 · uIDj

j,1

)r

= g

−kj,0
kj,1(IDj−ID∗

j
)

2 ·g−
∑n∗

i=2 αi

2 for r = − b

kj,1(IDj − ID∗
j )

.

A similar calculation shows that the CoalitionBroadcast algorithm gives cor-
rect broadcast messages for TA∗1. All other oracles that B provides correctly
simulate the security model for A.

If Z = e(g, g)abc then the challenge ciphertext is a correct encryption of mb.
This is because an encryption using the random value c would have

C1 = gc
1 = gc

C2,i = (ui,0 · uID∗i
i,1 )c = (gc)ki,0 for 0 ≤ i ≤ `∗

C3 = mb · e(
∏n∗

i=0 pk i, g2)c = mb · e(ga, gb)c = mb · e(g, g)abc

The probability that B outputs 1 in this situation is the probability that b = b′

in the sID-IND-CPA game for the attacker A. This probability can be shown to
be (AdvHIBE

A (k)− 1)/2. If Z is random then the challenge ciphertext information
theoretically hides b and so the probability that B outputs 1 in this situation is
1/2. This completes the proof. ut

4 Strengthened Security Results

4.1 IND-CPA Security

We may prove the security of the Boneh-Boyen scheme in the (non-selective-
identity) IND-CPA model by hashing all identities before use. The proof of this
fact mirrors the proof in Abdalla et al. [1] (in the random oracle model).



4.2 IND-CCA2 Security

We may transform an IND-CPA MTA-WIBE scheme into an IND-CCA2 MTA-
WIBE scheme using the CHK transform [6] in a manner similar to that described
in Abdalla et al. [1]. However, we will describe an alternative transformation
based on the Boneh-Katz (BK) transform [5]. This gives a new and more ef-
ficient method to transform IND-CPA secure WIBEs into IND-CCA2 secure
WIBEs. For the specific MTA-WIBE scheme presented in Section 3, there may
be more efficient IND-CCA2 constructions; however, we believe that the BK
transformation in this section is of independent interest and provides the most
efficient generic currently-known method to construct IND-CCA2 WIBEs and
MTA-WIBEs from IND-CPA schemes.

Boneh-Katz transforms an MTA-WIBE Π into a new MTA-WIBE Π ′ using
a MAC algorithm Mac and an “encapsulation” scheme (G,S,R). The encapsu-
lation scheme has a key generation algorithm σ

$← G(1k), commitment algorithm
(K, com, dec) $← S(1k, σ), and a decommitment algorithm D(σ, com, dec) which
outputs either a bitstring K or the error symbol ⊥. We assume that K ∈ {0, 1}k.
We require that if (K, com, dec) $← S(1k, σ) then D(σ, com, dec) = K. We also
require that the scheme is hiding in the sense that all PPT attackers A have
negligible advantage:

∣∣∣ Pr
[
A(1k, σ, com,Kb) = b :

σ
$← G(1k); K0

$← {0, 1}k

(K1, com, dec) $← S(1k, σ); b
$← {0, 1}

]
− 1

2

∣∣∣

We further require that the encapsulation scheme is binding in the sense that
all PPT attackers A have negligible advantage:

Pr
[
R(σ, com, dec′) /∈ {⊥,K} : σ

$← G(1k); (K, com, dec) $← S(1k, σ)
dec′ $← A(1k, σ,K, com, dec)

]

Lastly, we assume that the decommitments dec∗ are always of some fixed size
(which may depend on k). The security notions for a MAC scheme are given
in Appendix A.2. The transform of Π into Π ′ is given in Figure 2. We assume
that “−” represents some fixed, publicly-known allowable identity for the CPA
scheme; we will deliberately exclude “−” from the space of allowable identities
in the CCA scheme.

Theorem 3. Suppose that the Π is an IND-CPA secure MTA-WIBE, Mac is
an unforgeable MAC scheme, and (G,S,R) is a hiding and binding encapsulation
algorithm. Then the MTA-WIBE Π ′ produced by the BK transform is IND-
CCA2 secure.

The proof strategy is similar to that of Boneh and Katz [5] but has to deal
with technical details introduced by the trust authorities and the WIBE scheme.
A full proof is given in Appendix C



Setup′(1k):

param
$← Setup(1k)

σ
$← G(1k)

param ′ ← (param, σ)
Return param ′

Encode(P, α):
Parse P as (P0, . . . , P`)
For i = 0, . . . , `, P ′i ← Pi

For i = ` + 1, . . . , L, P ′i ← “−”
P ′L+1 ← α
Return P ′

Encode′(P, ID , α):
For i = 1, . . . , |P | − |ID |

If P|ID|+i 6= ∗ then ID ′
i ← P|ID|+i

If P|ID|+i = ∗ then ID ′
i ← 1k

For i = 1, . . . , L− |P |
ID |P |−|ID|+i ← “−”

IDL−|ID|+1 ← α
Return ID ′

CoalitionExtract′(dID , v):
cID ← (dID , v)
Return cID

Encrypt′(C,PK , P, m):

(K, com, dec)
$← S(1k, σ)

P ′ ← Encode(P, com)
m′ ← (m, dec)

C′
$← Encrypt(C,PK , P ′, m′)

τ ← MacK(C‖P‖C′)
Return (com, C, P, C′, τ)

Decrypt′(cID , C):
Parse C as (com, C, P, C′, τ)
Parse cID as (dID , v)
ID ′ ← Encode′(P, ID , com)

d′
$← Extract(ID , dID , ID ′)

c′ ← CoalitionUpdate(d′, v)

(m, dec)
$← Decrypt(c, C′)

K ←R(σ, com, dec)
If MacK(C‖P‖C′) 6= τ then return ⊥
Else return m

Fig. 2. The Boneh-Katz transform for a MTA-WIBE. Any algorithm of Π ′ not explic-
itly defined in this figure is identical to the corresponding algorithm in Π. The Encode

algorithm turns an ` level pattern into an L + 1 level pattern. The Encode′ algorithm
computes the extension to ID required to turn an identity which matches P into an
identity which matches Encode(P, α).

Acknowledgements

This research was sponsored by the US Army Research Laboratory and the UK
Ministry of Defence and was accomplished under Agreement Number W911NF-
06-3-0001. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the US Army Research Laboratory, the US Gov-
ernment, the UK Ministry of Defence, or the UK Government. The US and
UK Governments are authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright notation hereon. The research
was conducted while the second author was visiting The Graduate Center of the
City University of New York. The authors would like to thank the reviewers for
their comments on the paper.

References

1. M. Abdalla, D. Catalano, A. W. Dent, J. Malone-Lee, G. Neven, and N. P. Smart.
Identity-based encryption gone wild. In M. Bugliesi, Bart Preneel, V. Sassone, and



I. Wegener, editors, Automata, Languages and Programming – ICALP 2006, vol-
ume 4052 of Lecture Notes in Computer Science, pages 300–311. Springer-Verlag,
2006.

2. M. Abdalla, E. Kiltz, and G. Neven. Generalized key delegation for hierarchical
identity-based encryption. In J. Biskup and J. Lopez, editors, Computer Security
– ESORICS 2007, volume 4734 of Lecture Notes in Computer Science, pages 139–
154. Springer-Verlag, 2007.

3. K. D. Boklan, Z. Klagsbrun, K. G. Paterson, and S. Srinivasan. Flexible and
secure communications in an identity-based coalition environment. In Proc. IEEE
Military Communications Conference - MILCOM 2008, 2008.

4. D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption
without random oracles. In C. Cachin and J. Camenisch, editors, Advances in
Cryptology – Eurocrypt 2004, volume 3027 of Lecture Notes in Computer Science,
pages 223–238. Springer-Verlag, 2004.

5. D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built
using identity-based encryption. In A. Menezes, editor, Topics in Cryptology –
CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages 87–103.
Springer-Verlag, 2005.

6. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. In C. Cachin and J. Camenisch, editors, Advances in Cryptology –
Eurocrypt 2004, volume 3027 of Lecture Notes in Computer Science, pages 207–
222. Springer-Verlag, 2004.

7. S. Chatterjee and P. Sarkar. Multi-receiver identity-based key encapsulation with
shortened ciphertext. In R. Barua and T. Lange, editors, Progress in Cryptology
– INDOCRYPT 2006, volume 4329 of Lecture Notes in Computer Science, pages
394–408. Springer-Verlag, 2006.

8. Y. Dodis and N. Fazio. Public key broadcast encryption for stateless receivers. In
J. Feigenbaum, editor, Digital Rights Management – DRM 2002, volume 2696 of
Lecture Notes in Computer Science, pages 61–80. Springer-Verlag, 2003.

9. J. Horwitz and B. Lynn. Towards hierarchical identity-based encryption. In
L. Knudsen, editor, Advance in Cryptology – Eurocrypt 2002, volume 2332 of Lec-
ture Notes in Computer Science, pages 466–481. Springer-Verlag, 2002.

10. J. H. Park, K. T. Kim, and D. H. Lee. Cryptanalysis and improvement of a multi-
receiver identity-based key encapsulation at INDOCRYPT 06. In ASIAN ACM
Symposium on Information, Computer and Communications Security – ASIA CCS
2008, pages 373–380. ACM Press, 2008.

11. K. G. Paterson and S. Srinivasan. Security and anonymity of identity-based en-
cryption with multiple trusted authorities. In S. D. Galbraith and K. G. Paterson,
editors, Pairing-Based Cryptography – Pairing 2008, volume 5209 of Lecture Notes
in Computer Science, pages 354–375. Springer-Verlag, 2008.

12. A. Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley
and D. Chaum, editors, Advances in Cryptology – Crypto ’84, volume 196 of Lecture
Notes in Computer Science, pages 47–53. Springer-Verlag, 1984.

A Standard Definitions

A.1 Algorithms and Assignment

Throughout this article, y ← x denotes the assignment of the value x to the
variable y and y

$← S denotes the assignment of a uniform random element of



the finite set S to the variable y. If A is a probabilistic algorithm, then y
$← A(x)

denotes the assignment of the output of the algorithm A run on the input x to
the variable y when A is computed using a fresh set of random coins. We write
y ← A(x) if A is deterministic.

A.2 MAC algorithms

A MAC algorithm is a deterministic polynomial-time algorithm Mac. It takes
as input a message m ∈ {0, 1}∗ and a symmetric key K ∈ {0, 1}k, and outputs
a tag τ ← MacK(m). It should be infeasible for a PPT attacker A to win the
unforgeability game: (1) the challenger generates a key K

$← {0, 1}k; (2) the
attacker outputs a forgery (m∗, τ∗) $← A(1k). During its execution the attacker
can query a MAC oracle with a message m and will receive MacK(m). The
attacker wins if MacK(m∗) = τ∗ and m∗ was never queried to the MAC oracle.
The attackers probability of winning is written AdvMAC

A (k).

B Security Proof for BB-WIBE to BB-HIBE Reduction

Proof of Theorem 1
We directly describe the algorithm B which breaks the HIBE using the al-

gorithm A as a subroutine. Before we begin, we define some useful notation. If
P = (P1, . . . , Pk) is a pattern, then

W (P ) = {1 ≤ i ≤ k : Pi = ∗} and W (P≤j) = {1 ≤ i ≤ min{j, k} : Pi = ∗} .

The algorithm B runs as follows:

1. B runs A0 on the security parameter. A0 responds by outputting a descrip-
tion of the challenge coalition TA∗ = (TA∗1, . . . ,TA∗n) and the challenge
pattern P ∗ = (P ∗1 , . . . , P ∗`∗). Let π be a map which identifies the number
of non-wildcard entries in the first i layers of P ∗, i.e. π(i) = i − |W (P ∗≤i)|.
B outputs the challenge coalition TA∗ and the challenge identity ˆID

∗
=

( ˆID
∗
1, . . . ,

ˆID
∗
π(`∗)) where ˆID

∗
π(i) = P ∗i for i /∈ W (P ∗).

2. B responds with HIBE parameters param = (ĝ1, ĝ2, û1,0, . . . , ûL,1). B gener-
ates WIBE parameters as follows:

(g1, g2) ← (ĝ1, ĝ2)
ui,j ← ûπ(i),j for i /∈ W (P ∗), j ∈ {0, 1}
ui,j ← g

βi,j

1 for i ∈ W (P ∗), j ∈ {0, 1} where βi,j
$← Zp

ui,j ← ûi−|W (P∗)|,j for i ∈ {`∗ + 1, . . . , L}, j ∈ {0, 1} .

3. B executes A1 on the public parameters (g1, g2, u0,0, . . . , uL,1). A may make
the following oracle queries:
– CreateTA: B forwards this request to its own oracle and returns the

response.



– SubmitTA: B may ignore these queries as the CoalitionBroadcast al-
gorithm does not depend upon individual TA’s public keys.

– CoalitionBroadcast: B forwards this request to its own oracle and re-
turns the response.

– CoalitionUpdate: B forwards this request to its own oracle and returns
the response.

– Corrupt: To extract a decryption key for an identity ID = (ID1, . . . , ID`)
which does not match the challenge pattern, B computes the projection
of the identity onto the HIBE identity space to give a projected identity
ˆID = ( ˆID1 . . . , ˆID ˆ̀).
• If ` ≤ `∗ then ˆ̀← π(`) and ˆIDπ(i) ← ID i for i /∈ W (P ∗≤`). Since

ID does not match the challenge pattern for the WIBE, ˆID does not
match the challenge identity for the HIBE. B queries its Corrupt
oracle on ˆID and receives (ĥ, â0, . . . , âˆ̀) in response. B now “retro-
fits” to find a complete key, by setting

a0 ← â0

ai ← âπ(i) for 1 ≤ i ≤ ` and i /∈ W (P ∗≤`)
ai ← gri

1 for 1 ≤ i ≤ ` and i ∈ W (P ∗≤`) where ri
$← Zp

h ← ĥ
∏`

i=1,i∈W (P∗≤`
)(ui,0 · uIDi

i,1 )ri

and returning the key (h, a0, . . . , a`).
• If ` > `∗, then ˆ̀ = ` − |W (P ∗)|, ˆIDπ(i) ← ID i for 1 ≤ i ≤ `∗ and

i /∈ W (P ∗), and ˆID i−|W (P∗)| ← ID i for `∗ < i ≤ `. Since ID does
not match the challenge pattern for the WIBE, ˆID does not match
the challenge identity for the HIBE. B queries its Corrupt oracle on
ˆID and receives (ĥ, â0, . . . , âˆ̀) in response. B now “retro-fits” to find

a complete key, by setting

a0 ← â0

ai ← âπ(i) for 1 ≤ i ≤ `∗ and i /∈ W (P ∗)
ai ← gri

1 for 1 ≤ i ≤ `∗ and i ∈ W (P ∗) where ri
$← Zp

ai ← âi−|W (P∗)| for `∗ < i ≤ `

h ← ĥ
∏`∗

i=1,i∈W (P∗)(ui,0 · uIDi
i,1 )ri

and returning the key (h, a0, . . . , a`).
– Encrypt: A outputs two equal-length messages (m0,m1). B queries its

own encryption oracle on the messages (m0,m1) and receives the cipher-
text (C∗1 , Ĉ∗2,1, . . . , Ĉ

∗
2,π(`∗), C

∗
3 ). B retro-fits this to form the challenge

ciphertext for A by setting

C∗2,i ← Ĉ∗2,π(i) for 1 ≤ i ≤ `∗, i /∈ W (P ∗)
C∗2,i ← (C∗1

βi,0 , C∗1
βi,1) for 1 ≤ i ≤ `∗, i ∈ W (P ∗) .

A1 terminates with the output of a bit b′.



4. B outputs the bit b′.

The algorithm B correctly simulates the oracles to which A has access; further-
more, B wins the HIBE game if and only if A wins the game. Hence, the theorem
is proven. ut

C Security Proof for the BK Transform

Proof of Theorem 3
Our proof proceeds through a series of games. Let Wi be the event that

the attacker A outputs b′ = b in Game i and let starred values denote values
computed during the computation of the challenge ciphertext. Let Game 1 be
the normal IND-CCA2 game for A. Hence,

AdvCCA
A (k) = 2 · |Pr[W1]− 1/2| .

Let Game 2 be the same as Game 1 except that A is deemed to lose if it submits
a ciphertext (com∗, P, C, τ) such that the decommitment value dec′ recovered
during the decryption process satisfies R(σ, com∗, dec′) /∈ {⊥,K∗}. It is easy
to show that there exists a PPT algorithm B such that |Pr[W1] − Pr[W2]| ≤
Advbind

B (k).
Let Game 3 be identical to Game 2 except that the encryption oracle com-

putes m′∗ ← (mb, 0|dec
∗|) rather than m′∗ ← (mb, dec∗). Let E2 be the event

that A submits a ciphertext (com∗, C, P, C ′, τ) to the decryption oracle with
MacK∗(C‖P‖C ′) = τ in Game 2. Let E3 be the event that A submits a ci-
phertext (com∗, C, P, C ′, τ) to the decryption oracle with MacK∗(C‖P‖C ′) = τ
in Game 3. There exists an algorithm B∗ against the IND-CPA security of Π
such that |Pr[E3] − Pr[E2]| ≤ AdvCPA

B∗ (k). The attacker B∗(param) is defined as
follows:

1. σ
$← G(1k) and (K∗, com∗, dec∗) $← S(1k, σ).

2. param ′ ← (param, σ).
3. Run b′ $← A(param ′). Suppose A makes an oracle query.

– IfAmakes a CreateTA, SubmitTA, CoalitionBroadcast, CoalitionUpdate,
CoalitionExtract or Corrupt query, then B∗ passes the query to its
own oracle and returns the result.

– If A makes an encryption oracle query on the equal-length messages
(m0,m1), the pattern P ∗, and the coalition C∗ then B∗ computes P ′∗ ←
Encode(P ∗, com∗), d

$← {0, 1}, m′
0 ← (md, dec∗), m′

1 ← (md, 0|dec
∗|),

and queries its encryption oracle on (m′
0,m

′
1), the pattern P ′∗, and

the coalition C∗. It receives C ′∗ from its oracle, and computes τ∗ ←
MacK∗(C∗‖P ∗‖C ′∗). It returns (com∗, C∗, P ∗, C ′∗, τ∗).

– If A makes a decryption query on (com, C, P, C ′, τ) with com 6= com∗ for
the identity ID and the coalition C, then B∗ computes P ′ ← Encode(P, com),
replaces the wildcards in P ′ with 1k to form the identity ID ′ and re-
quests the decryption key dID′ for ID ′. Since A can only make decryption



queries for coalitions for which the adjustment parameter v is known, B∗
forms the decryption key c′ $← CoalitionExtract(dID′ , v). B∗ can use
this key to decrypt C ′, and decrypt the rest of the ciphertext as normal.

– If A makes a decryption query on (com∗, C, P, C ′, τ), then B∗ checks
whether MacK∗(C‖P‖C ′) = τ . If so, B∗ outputs 1 and terminates. Oth-
erwise, B returns ⊥ to A.

4. B∗ outputs 0

This attacker is legal since it only queries the decryption oracle on identities
with com 6= com∗. If b = 0 then B∗ outputs 1 whenever E2 occurs. If b = 1 then
B∗ outputs 1 whenever E3 occurs. Hence, |Pr[E3]− Pr[E2]| ≤ AdvCPA

B∗ (k).
There exists an attacker B′ such that |Pr[W3|¬E3]−Pr[W2|¬E2]| ≤ AdvCPA

B′ (k).
The attacker B′(param) is defined as follows:

1. σ
$← G(1k) and (K∗, com∗, dec∗) $← S(1k, σ).

2. param ′ ← (param, σ).
3. Run d′ $← A(param ′). Suppose A makes an oracle query.

– IfAmakes a CreateTA, SubmitTA, CoalitionBroadcast, CoalitionUpdate,
CoalitionExtract or Corrupt query, then B passes the query to its own
oracle and returns the result.

– If A makes an encryption oracle query on the equal-length messages
(m0,m1) and the pattern P ∗, then B computes P ′∗ ← Encode(P ∗, com∗),
d

$← {0, 1}, m′
0 ← (md, dec∗), m′

1 ← (md, 0|dec
∗|), and queries its encryp-

tion oracle on (m′
0,m

′
1) and the pattern P ′. It receives C ′∗ from its oracle,

and computes τ∗ ← MacK∗(C∗‖P ′∗‖C ′∗). It returns (com∗, C∗, P ∗, C ′∗, τ∗).
– If A makes a decryption query on (com, C, P, C ′, τ) with com 6= com∗ for

the identity ID and the coalition C, then B computes P ′ ← Encode(P, com),
replaces the wildcards in P ′ with 1k to form the identity ID ′ and re-
quests the decryption key dID′ for ID ′. Since A can only make decryption
queries for coalitions for which the adjustment parameter v is known, B
forms the decryption key c′ $← CoalitionExtract(dID′ , v). B can use
this key to decrypt C ′, and decrypt the rest of the ciphertext as normal.

– If A makes a decryption query on (com∗, C, P, C ′, τ), then B returns ⊥.
4. If d = d′ then B′ returns 1, else it returns 0.

This is a legal attacker and |Pr[W3|¬E3]− Pr[W2|¬E2]| ≤ AdvCPA
B′ (k). A simple

probability argument can be used to show that:

|Pr[W3]− Pr[W2]| ≤ 2 ·AdvCPA
B∗ (k) + AdvCPA

B′ (k) + Pr[E3] .

Next, let Game 4 be identical to Game 3 except that the key K∗ used in
the encryption algorithm (and to determine if ciphertexts should be rejected)
is randomly chosen from {0, 1}k. There exists an attacker B† against the hid-
ing property of the encapsulation algorithm such that |Pr[W4] − Pr[W3]| ≤
2·Advhide

B† (k). Let E4 be the event that A submits a ciphertext (com∗, C, P, C ′, τ)
to the decryption oracle with MacK∗(C‖P‖C ′) = τ in Game 4. Again, we have
|Pr[E4]− Pr[E3]| ≤ 2 ·Advhide

B† (k).



Finally, let Game 5 be identical to Game 4 except that (a) the attacker
loses if it queries the decryption oracle on a ciphertext (com∗, C, P, C ′, τ) before
it queries the encryption oracle, and (b) the attacker returns ⊥ whenever the
attacker queries the decryption oracle on a ciphertext (com∗, C, P, C ′, τ) after it
queries the encryption oracle. There exists an algorithm B′′ against the MAC
algorithm such that |Pr[W5]− Pr[W4]| ≤ qDAdvMAC

B′′ (k) + γ(k) where γ(k) is the
maximum probability that a randomly generated com∗ is any fixed binary value.
As a byproduct, we also obtain Pr[E4] ≤ qDAdvMAC

B′′ (k).
We can show a direct reduction from Game 5 to the underlying IND-CPA

security of Π. There exists an algorithm B] such that 2 · |Pr[W5] − 1/2| =
AdvCPA

B] (k). This algorithm simply translates decryption oracle queries made by
A against the MTA-WIBE scheme into translates decryption oracles made by
B] against the tag-based encryption scheme (for ciphertexts with com 6= com∗)
or returns ⊥ (for ciphertexts with com = com∗). All decryption oracle queries
made by B] are legal as the weak selective-tag IND-CPA security model allows
for decryption oracle queries for tags com 6= com∗. This concludes the proof. ut


