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Abstract

This paper presents results that show that there exist problems in
that are provably hard in the generic group model but easy to solve
whenever the random encoding function is replaced with a specific
encoding function (or one drawn from a specific set of encoding func-
tions). We also show that there exist cryptographic schemes that are
provably hard in the generic group model but easy to break in practice.

1 Introduction

Due to their complex nature it is difficult to gave concrete statements
about the security of asymmetric encryption schemes. In order to prove
results about their security several models have been proposed. Each
model makes some assumption about how properties of certain parts
of the scheme.

The random oracle model was introduced by Bellare and Rogaway
[1]. It was designed to show the difficulty of breaking cryptographic
algorithms by modelling certain parts of the cipher (usually the hash
functions) as random functions. Doubt was cast on the validity of
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this model by Canetti, Goldreich and Halevi [3] who proved that there
exists a theoretical signature scheme that is secure in the random or-
acle model but insecure when the random function is replaced by any
polynomial time computable function or set of functions.

The generic group model was proposed by Shoup [8] to give ex-
act bounds on the difficulty of the discrete logarithm problem and the
Diffie-Hellman problem in the situation where the attacker has no in-
formation about the specific representation of the group being used.
In other words the attacker is trying to solve a discrete logarithm (or
Diffie-Hellman) problem in a group isomorphic to Cp but does not know
whether this group is realised as, say, a multiplicative group or as an
elliptic curve group. We cast some doubt on the model by proposing
a problem that is provably difficult in the generic group model but for
which there exists an attacker that can easily solve the problem for any
representation of the group without using any properties of the special
properties of that representation.

More recently the generic group model has been used by Brown
[2], Schnorr and Jakobsson [7], and Smart [9] in the analysis of certain
cryptographic protocols based on the Diffie-Hellman problem. This
result shows that, for the analysis of asymmetric primitives, the generic
group model has the same weaknesses as the random oracle model. In
particular we show how a secure signature scheme may be modified
to give a scheme that is still secure in the generic group model but
insecure whenever any specific representation of the group is chosen.

This work is similar in its intent to the work of Fischlin [4] but
our result is an improvement. Fischlin shows that the security of the
Schnorr signature scheme [6] in the generic group model might depend
upon the choice of hash function used within the scheme. The paper
shows that the scheme is weak in the generic group model with one
particular hash function and postulates that the scheme is secure in
the generic group model with a different hash function. We improve
upon this result and show that if there exists any signature scheme
that is secure in the generic group model then there exists a tweaked
version of that scheme that is still provably secure in the generic group
model but insecure in practice.

2 The generic group model

Let p be a k-bit prime and let Zp be the group of additive integers
modulo p. Let lout : N→ N be a length function with lout(k) ≥ k and
S = {0, 1}lout(k). Note that it is possible to represent elements of Zp

as members of S. An encoding function is a function σ : Zp −→ S for
which σ(x) = σ(y) if and only if x = y.

The most common examples of encoding functions include repre-
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senting an element x ∈ Zp as:

• the bit representation of x in Zp,

• the bit representation of gx in Zm, where g has order p in Zm,

• the bit representations of the co-ordinates of the elliptic curve
point xP , where P is a point of order p on an elliptic curve E.

It is important to note that finding x given σ(x) and σ(1) is the same
as solving the discrete logarithm problem on the group.

A generic algorithm is a probabilistic, polynomial-time Turing ma-
chine M that takes representations of group elements σ(x1), . . . , σ(xm)
as inputs. As M is executed it may compute group operations on group
elements by way of an addition oracle O : S × S × Z2 −→ S such that

O(σ(xi), σ(xj), b) = σ(xi + (−1)bxj).

We assume that any call to this oracle involves one evaluation of σ.
We will denote a generic algorithm M with access to an encoding

function σ and a suitable addition/subtraction oracle by Mσ (we im-
plicitly assume the presence of an addition oracle whenever we have
an oracle for the encoding function). We define the result of running
such an algorithm as x ← Mσ. This differs from the original definition
of [8] as our generic algorithm can calculate σ(x) for any x ∈ Zp with-
out calculating any intermediate values. In particular M can calculate
σ(1).

This does not substantially change any of the results given in [8]
because even when it is not possible to calculate σ(x) directly, it is
always possible to calculate σ(x) using a polynomial number of queries
to the addition oracle O. The following is a result of Shoup [8].

Result 2.1 Let x ∈ Zp and let σ be a randomly chosen encoding func-
tion of Zp into S. If Mσ is a generic algorithm for Zp on S that makes
at most m evaluations of σ then the probability that x ← Mσ(σ(x)) is
O(m2/p). Note that in particular if Mσ makes a number of evaluations
of σ that is polynomial in k then the probability that x ← Mσ(σ(x)) is
negligible.

3 Evasive relations on groups

The definition of an evasive relationship was introduced in [3] and we
will continue to develop definitions and use proof techniques that that
paper suggests. The notion of evasive relations capture one difference
between random functions (a function chosen at random from all pos-
sible functions) and functions actually used in practice (that must be
calculatable).

3



Definition 3.1 (Evasive Relation) A relation R ⊆ {0, 1}∗×{0, 1}lout(k)

is said to be evasive if for any probabilistic polynomial-time Turing ma-
chine M with access to an oracle P we have

Pr[x ← MP(1k), (x,P(x)) ∈ R]

is negligible in k, where the probability is taken uniformly over all
choices of oracle P : {0, 1}∗ −→ {0, 1}lout(k) and the coins of M .

We extend this definition so that it is applicable to the group set-
ting.

Definition 3.2 (Evasive Group Relation) A relation R ⊆ G×S is
said to be an evasive group relation if for any probabilistic polynomial-
time Turing machine M we have

Pr[x ← Mσ(1k), (x, σ(x)) ∈ R]

is negligible in k, where the probability is taken uniformly over all
choices for an encoding function σ : G −→ S and the coins of M .

However, in the real world we will not be working with a random
encoding function but with a known computable function that is, at
worst, chosen from some collection. For example we could be working
in a subgroup of the multiplicative group of integers modulo a value or a
subgroup of an elliptic curve group with the points represented as either
compressed, uncompressed or hybrid bit-strings. We designate the
collection of these possible encoding functions an “encoding ensemble”.

Definition 3.3 (Encoding ensemble) We define an encoding en-
semble F to be a collection of encoding functions fs : Zp −→ S
where s ∈ {0, 1}k. (We do not require that F contain exactly 2k func-
tions, just that this is an upper bound). We require that there exists a
polynomial-time algorithm Eval such that Eval(s, x) = fs(x) and a
polynomial-time algorithm Add such that

Add(s, fs(xi), fs(xj), b) = fs(xi + (−1)bxj).

Once again we reiterate the fact that complete knowledge of an
encoding function fs and the encoding a group element fs(x) does not
imply that it is feasible to calculate x. This is the discrete logarithm
problem and in general this is hard. However, in general, it is not
necessary to be able to invert an encoding function in order to construct
the Add function - as the encoding function for multiplicative groups
(the second example encoding function in section 2) demonstrates.

We try to emulate the idea of evasive group relation when the ran-
domly chosen encoding function is replaced with a function chosen at
random from an encoding ensemble.
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Definition 3.4 (Correlation intractability) Let F be an encoding
ensemble of Zp into S. F is correlation intractable if for every prob-
abilistic, polynomial-time Turing machine M and every evasive group
relation R we have that

Pr[s ← {0, 1}k, x ← M(s), (x, fs(x)) ∈ R]

is negligible in k, where the probability is taken over the uniformly
random choice of s and the coins of M .

A clear example of the difference between random encoding func-
tions (an encoding function drawn at random from all possible encod-
ing functions) and encoding ensembles (where the encoding function
is drawn from a specific set) is that there exists no encoding ensemble
which is correlation intractable.

Lemma 3.5 There exist no correlation intractable encoding ensem-
bles.

Proof Let F be an encoding ensemble of Zp into S and define the
relation R to be

R = {(s̄, fs(s̄)) : s ∈ {0, 1}k} (1)

where s̄ = s (mod p). This is an evasive relation because for every
x ∈ Zp there exists at most two y such that (x, y) ∈ R and so, for any
x ∈ Zp, we have that

Pr[(x, σ(x)) ∈ R] ≤ 1
2lout(k)−1

≤ 1
2k−1

for a randomly chosen encoding function σ.
However if M(s) is the machine that returns s̄ then

Pr[s ← {0, 1}k, s̄ ← M(s), (s̄, fs(s̄)) ∈ R] = 1

for any random choice of s ∈ {0, 1}k. So F is not a correlation in-
tractable encoding ensemble.

¥

4 A hard problem with an easy solution

We now examine a slightly different problem. We still attempt to solve
the discrete logarithm problem in the group Zp as it is represented by
the encoding function, however we now allow the attacking machine
to have access to certain oracles. We attempt to show that whilst this
problem is secure in the generic group model, it is insecure whenever
any specific encoding function or encoding ensemble is used.
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4.1 A modified problem

For any evasive group relation R we define an oracle Dσ
R such that

Dσ
R(y, σ(x)) =

{
x if (y, σ(y)) ∈ R,
⊥ otherwise.

We still have that

Theorem 4.1 If Mσ,Dσ
R is a generic algorithm that makes at most a

number of queries to any oracle that is polynomial in n then

Pr[x ← Mσ,Dσ
R(σ(x))]

is negligible, where the probability is taken over the uniform choice of
encoding function σ and the coins of M .

Proof Obviously the oracle Dσ
R does not affect M unless it is queried

with a value y such that (y, σ(y)) ∈ R). Since R is a group evasive
relation this probability is negligible, hence we may ignore the oracle
Dσ

R. However in this case we may appeal to Result 2.1, which proves
that the probability of Mσ returning x without the oracle Dσ

R is also
negligible.

Formally we define E to be the event that the oracle Dσ
R is queried

with (y, z) such that (y, σ(y)) ∈ R and Ē be the complement of this
event. So,

Pr[x ← Mσ,Dσ
R(σ(x))] = Pr[x ← Mσ,Dσ

R(σ(x))|E]Pr[E]
+Pr[x ← Mσ,Dσ

R(σ(x))|Ē]Pr[Ē]
≤ Pr[E] + Pr[x ← Mσ,Dσ

R(σ(x))|Ē]

and both of these terms are negligible, the latter by result 2.1.

¥
This proves that the oracle Dσ

R has no effect on the problem in the
generic group model. Now consider the effects of this oracle when the
random encoding function σ is replaced by an encoding ensemble. (Or
rather the function σ chosen at random from all encoding functions
is replaced with a function fs chosen at random from the encoding
ensemble F .) If we use the group evasive relation R defined in Equation
(1) then the previously useless oracle Dσ

R now becomes

Ds
R(y, fs(x)) =

{
x if (y, fs(y)) ∈ R,
⊥ otherwise.

Of course now there exists a machine MDs
R(fs(x), s) that will output

x with probability 1 just by querying the oracle Ds
R with the query

(s̄, fs(x)), where s̄ ∈ Zp and s̄ ≡ s mod p.
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4.2 A universal encoding ensemble

So far we have shown that for every encoding ensemble there exists
an oracle discrete logarithm problem that is provably difficult in the
generic group model but easy when the random encoding function is
replaced by a specific given encoding ensemble. We will now attempt to
generalize this to an oracle discrete logarithm problem that is hard in
the generic group model but easy when the random encoding function
is replaced by any encoding ensemble. In order to do this we will need
to enumerate all possible encoding ensembles.

Recall that for any function ensemble F there exists a polynomial-
time function Eval(s, x) that evaluates fs(x). We cannot enumerate
all polynomial-time functions as there is no single polynomial-time
bound that they all obey, so instead we enumerate all functions that
run in time t(k) = klog k. We do this by enumerating all algorithms and
modifying each algorithm to force it to terminate after t(k) steps. Note
that this enumeration will include all polynomial-time algorithms.

We denote the i-th encoding ensemble in this enumeration by F i

and the s-th member of that encoding ensemble by f i
s. We let U denote

the universal encoding ensemble given by

U(〈i, s〉, x) = f i
s(x)

We remark that there exists a machine that computes U and runs in
time t(k). Now consider the relation R induced by U given by

R = {(x, y) : y = U(x, x̄)} ⊆ {0, 1}∗ × S (2)

where x̄ is the element of Zp such that x̄ ≡ x mod p (i.e. (x, y) ∈ R if
and only if x = 〈i, s〉 and y = f i

s(x̄)). This relation is clearly evasive
as for any x there exists at most one value of y such that (x, y) ∈ R.
Again we consider the oracle Dσ

R such that

Dσ
R(y, σ(x)) =

{
x if (y, σ(y)) ∈ R,
⊥ otherwise.

Now we may deduce the following two results in exactly the same
way as before but using the evasive relation R (which is slightly differ-
ent to the evasive group relation we used before).

Lemma 4.2 If Mσ,Dσ
R is a generic algorithm that make a polynomial

number of queries to any oracle then

Pr[x ← Mσ,Dσ
R(σ(x))]

is negligible, where the probability is taken over the uniform choice of
encoding function σ and the coins of M .
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Now we replace the random encoding function σ with the label
describing the encoding function, 〈i, s〉. It is important to replace σ
with 〈i, s〉 exactly. Since σ is an oracle that is available to both the
attacker and the oracle DR we must make sure that both the attacker
and the oracle have access to a legitimate copy of 〈i, s〉. It is easiest to
think of 〈i, s〉 as a system parameter.

Lemma 4.3 There exists a Turing machine M that runs in time poly-
nomial in k such that

Pr[x ← MD
〈i,s〉
R (f i

s(x), 〈i, s〉)] = 1.

Proof M queries D
〈i,s〉
R with the input (〈i, s〉, f i

s(x)) and then outputs
the output of the oracle. This can be done in polynomial time since
we know f i

s is a polynomial time encoding function.

¥

5 Signature schemes

The results in this paper have been phrased in terms of an oracle prob-
lem that is provably hard in the generic group model. Some readers
might dislike the use of a very powerful oracle that only outputs useful
information in a very small number of cases. We have chosen to ex-
hibit the results in the more general sense of a problem but it should
also be noted that the above results could have been phrased in terms
of a signature or encryption scheme. Here the oracle is replaced by
access to a signing oracle or a decryption oracle, which seems much
more natural.

5.1 A signature scheme that runs in super-polynomial
time

Suppose (S,V) is a signature scheme secure against adaptive chosen
message attacks in the generic group model. We can modify the scheme
so that it is still secure in the generic group model but insecure when
any encoding ensemble is used instead of a random encoding function.
Let S1 be the signing function given by

Sσ
1 (m, sk) =

{
sk||Sσ(m, sk) if (m,σ(m)) ∈ R,
Sσ(m, sk) if (m,σ(m)) /∈ R.

where m is the message to be signed, sk is the secret key and R is the
relation given in equation 2. The corresponding verifying algorithm,
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V1 is given by

Vσ
1 (m, s, pk) =




Vσ(m, s′, pk) if (m,σ(m)) ∈ R and s = x||s′

(where x is the same length as sk),
Vσ(m, s, pk) if (m,σ(m)) /∈ R.

where m is the message, s is the signature and pk is the public key.
The signature scheme (S1,V1) is still secure against adaptive chosen
message attacks in the generic group model.

However we have already shown that once we replace the random
encoding function σ with an encoding function fs drawn at random
from an encoding ensemble F i then we can find a message m = 〈i, s〉
for which (m, f i

s(m)) ∈ R. Hence we completely recover the secret key
if we query the signing oracle with m. So the scheme is insecure for
any concrete instantiation of the encoding function, i.e. the scheme is
insecure in practice.

Unfortunately we are not quite finished: at the moment both the
signing and verifying algorithms run in time t(k) = O(klog k). This is
because both algorithms need to check a relation in R and then only
way to check if (〈i′, s′〉, y) ∈ R is to check if f i′

s′(〈i′, s′〉) = y, which may
take super-polynomial time.

5.2 Running the scheme in polynomial time

We will use the CS-proof techniques of Micali [5] to run this scheme
in polynomial time. Unlike [3] we cannot use guaranteed CS-proofs as
we are unable to easily construct independent random functions 1, so
we will instead use the notion of a cryptographic CS-proof. For this
we require that all parties have access to a common random string r.
Micali [5] shows that there exists polynomial-time algorithms Pro and
Ver such that

• if (x, σ(x)) ∈ R then Pro that computes a proof π to this fact,

• if (x, σ(x)) ∈ R and π is a proof to this fact then Ver verifies
this proof,

• if (x, σ(x)) /∈ R then a polynomial-time adversary produces a
proof π′ that Ver accepts for only an exponentially small number
of random strings r.

1Of course, we could allow all parties to have access to a random oracle and then use
the construction given in [3]. This would then allow us to prove that, in the random
oracle model, there exists a scheme that is secure in the generic group model but insecure
in any practical situation. Alternatively we could construct a scheme that is secure in
the combined random oracle/generic group model but insecure in the standard model
(i.e. when all random functions are replaced with functions drawn from the relevant
ensembles). Whilst this is the technique used in Schnorr and Jakobsson [7] we feel that,
in this particular situation, this is too much like passing the buck!
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From the details of [5] we see that it is reasonable to assume that the
last fact goes even further: for any random string r it is computation-
ally infeasible for a polynomial-time adversary to find a group element
x and a proof π′ such that (x, σ(x)) /∈ R but Ver accepts the proof.

So we may now define a new signature scheme (S2,V2) that is still
secure against adaptive chosen ciphertext attacks in the generic group
model. Note that any message m may be written as x||π where x is a
group element, hence we may define the signing function on a message
m to be:

Sσ
2 (m, sk) =





sk||Sσ(m, sk) if Ver verifies the proof π that
(x, σ(x)) ∈ R,

Sσ(m, sk) otherwise.

where sk is the secret key. The corresponding verifying function for a
message m and a proposed signature s is given by:

Vσ
2 (m, s, pk) =





Vσ(m, s′, pk) if Ver verifies the proof π that
(x, σ(x)) ∈ R and s = x||s′ (where
x is the same length as sk),

Vσ(m, s, pk) otherwise.

This scheme is secure in the generic group model because it is com-
putationally infeasible to guess x such that (x, σ(x)) ∈ R and it is also
computationally infeasible to produce a proof π that will fool the sign-
ing oracle into believing that (x, σ(x)) ∈ R. Furthermore, since Ver
runs in polynomial-time, both the signing and verifying functions run
in polynomial-time.

However when the random oracle is replaced by an encoding func-
tion f i

s then an attacker could submit the message

m = 〈i, s〉 || Pro(x, r)

to the signing oracle and the signing oracle will return the secret key.
So the scheme is insecure for any practical instantiation of the encoding
function.

6 Conclusion

We have shown that the generic group model suffers from the same
weaknesses as the random oracle model, namely, that a problem can
be shown to be hard in the generic group model but is easy when the
random function is changed to any specific function or set of functions.
This shows that the generic group model is not a perfect way to rep-
resent an algorithm that attacks a problem defined on a group but
doesn’t take advantage of any of the specific group structure.
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We have also adapted this to show that there are cryptographic
schemes that are secure in the generic group model that are insecure
whenever a specific encoding function is used. Heuristically this means
that security proofs that rely on the generic group model should be
viewed with the same caution as security proofs that rely on the ran-
dom oracle model.
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