
A Designer’s Guide to KEMs

Alexander W. Dent

Information Security Group,
Royal Holloway, University of London,

Egham Hill, Egham, Surrey, U.K.
alex@fermat.ma.rhul.ac.uk

http://www.isg.rhul.ac.uk/~alex/

Errata List

There have been several pieces of technical errata for this paper since it
was first published. This copy of the paper contains corrected proofs, but
earlier copies will contain the following errors:

An issue was identified with the original construction given in Section 6.
The original proposed construction makes the implicit assumption that
because the encryption scheme (G, E ,D) is deterministic there exists only
ciphertext C ∈ C such that D(C, sk) = x for every x. This assumption
is false. We solve this problem by adding an extra step to the decryption
algorithm, between the original steps 2 and 3. This new step is defined
as:

3. Check that C = E(x, pk). If not, output ⊥ and halt. Note that this
step is unnecessary if there exists only one ciphertext that corresponds
to each message or if it is computationally infeasible for an attacker
to find two ciphertexts that decrypt to give the same value.

It was pointed out (by Nigel Smart of the University of Bristol) that the
proof of security for the generalised PSEC-KEM construction given in
Section 5 requires a plaintext-ciphertext checking oracle. This was not
originally stated in the theorem. This means that, in terms of assump-
tions, the original constructions of Sections 6 and 7 are optimal.

It was pointed out (by James Birkett of Royal Holloway, University of
London) that the proof of Theorem 2 given in Appendix A contains nu-
merous small errors. In particular, the two simulated oracles do not give
consistent responses to attacker queries, thereby allowing the attacker to
distinguish between the cases where he is dealing with proper and simu-
lated decryption oracles.

A Designer’s Guide to KEMs

Alexander W. Dent

Information Security Group,
Royal Holloway, University of London,

Egham Hill, Egham, Surrey, U.K.
alex@fermat.ma.rhul.ac.uk

http://www.isg.rhul.ac.uk/~alex/

Abstract. A generic or KEM-DEM hybrid construction is a formal
method for combining asymmetric and symmetric encryption techniques
to give an efficient, provably secure public-key encryption scheme. This
method combines an asymmetric key encapsulation mechanism (KEM)
with a symmetric data encapsulation mechanism (DEM). A KEM is a
probabilistic algorithm that produces a random symmetric key and an
asymmetric encryption of that key. A DEM is a deterministic algorithm
that takes a message and a symmetric key and encrypts the message
under that key. Each of these components must satisfy its own security
conditions if the overall scheme is to be secure. In this paper we de-
scribe generic constructions for provably secure KEMs based on weak
encryption algorithms. We analyse the two most popular techniques for
constructing a KEM and note that they are either overly complex or
based on needlessly strong assumptions about the security of the under-
lying trapdoor function. Hence we propose two new, simple methods for
constructing a KEM where the security of the KEM is based on weak as-
sumptions about the underlying function. Lastly we propose a new KEM
based on the Rabin function that is both efficient and secure, and is the
first KEM to be proposed whose security depends upon the intractability
of factoring.

1 Introduction

Whilst most dedicated public-key encryption algorithms are fine for send-
ing short messages, many schemes have problems sending long or arbi-
trary length messages. Most of the normal “modes of operation” which
might allow a sender to send a long message using a public-key encryption
algorithm directly are cripplingly inefficient.

One particular way to solve these problems is to use symmetric en-
cryption with a randomly generated key to encrypt a message, and then
use asymmetric cryptography to encrypt that (short) random key. This
method has been cryptographic folklore for years and, as such, was not
formally studied. This led to papers such as [3] which can be used to attack

schemes in which the set of symmetric keys is significantly smaller than
the message space of the asymmetric scheme used to encrypt them. This
folklore has recently been formalised in terms of a generic or KEM-DEM
construction [4]. In this construction the encryption scheme is divided
into two parts: an asymmetric KEM and a symmetric DEM. A KEM (or
key encapsulation mechanism) is a probabilistic algorithm that produces
a random symmetric key and an encryption of that key. A DEM (or data
encapsulation mechanism) is a deterministic algorithm that encrypts a
message of arbitrary length under the key given by the KEM.

This approach to the construction of hybrid ciphers has quickly be-
come popular. Not only have several KEM schemes been proposed in the
research literature [4, 7] but this approach has been adopted by the ISO
standardisation body [12]. However KEMs are still proposed in an ad hoc
fashion. Currently, if one wishes to propose a KEM based on one partic-
ular trapdoor problem then it is necessary to design such a KEM from
scratch.

In this paper we examine generic methods for constructing KEMs from
weak encryption schemes. We analyse the two methods for constructing a
KEM based on existing schemes and show that either they require the un-
derlying encryption scheme to have security properties which are stronger
than they need to be or they are overly complex. We also provide two new
generic construction methods which overcome these problems. Essentially
this paper gives a toolbox to allow an algorithm designer to construct a
KEM from almost any cryptographic problem. To demonstrate the power
of the results we will also propose a new KEM, Rabin-KEM, that is as
secure as factoring.

It should be noted that most of the results contained in this paper
can be easily adapted to simple, “one-pass” key-agreement protocols like
the Diffie-Hellman key agreement scheme [5].

2 The Security of a KEM

A KEM is a triple of algorithms:

– a key generation algorithm, KEM .Gen, which takes as input a security
parameter 1λ and outputs a public/secret key-pair (pk, sk),

– a encapsulation algorithm, KEM .Encap, that takes as input a public-
key pk and outputs an encapsulated key-pair (K, C) (C is sometimes
said to be an encapsulation of the key K),

– a decapsulation algorithm, KEM .Decap, that takes as input an en-
capsulation of a key C and a secret-key sk, and outputs a key K.

Obviously if the scheme is to be useful we require that, with overwhelming
probability, the scheme is sound, i.e. for almost all (pk, sk) = KEM .Gen(1λ)
and almost all (K, C) = KEM .Encap(pk) we have that K = KEM .Decap(C, sk).
We also assume that the range of possible keys K is some set of fixed
length binary strings, {0, 1}KEM .KeyLen(λ).

We choose to approach provable security from an asymptotic/complexity
theoretic point of view and suggest that a scheme is secure if the prob-
ability of breaking that scheme is negligible as a function of the security
parameter.

Definition 1. A function f is said to be negligible if, for all polynomials
p, there exists a constant Np such that

f(x) ≤ 1
p(x)

for all x ≥ Np .

A KEM is considered secure if there exists no attacker with a signifi-
cant advantage in winning the following game played against a mythical
challenger.

1. The challenger generates a public/secret key-pair (pk, sk) = KEM .Gen(1λ)
and passes pk to the attacker.

2. The attacker runs until it is ready to receive a challenge encapsulation
pair. During this time the attacker may repeatedly query a decapsu-
lation oracle to find the key associated with any encapsulation.

3. The challenger prepares a challenge encapsulated key-pair as follows:
(a) The challenger generates a valid encapsulated key-pair (K0, C) =

KEM .Encap(pk).
(b) The challenger selects an alternate key K1 chosen uniformly at

random from the set {0, 1}KEM .Gen(λ).
(c) The challenger selects a bit σ uniformly at random from {0, 1}.
The challenger then passes (Kσ, C) to the attacker.

4. The attacker is allowed to run until it outputs a guess σ′ for σ. During
this time the attacker may repeatedly query a decapsulation oracle to
find the key associated with any encapsulation except the challenge
encapsulation C.

The attacker is said to win this game if σ′ = σ. We define an attacker’s
advantage Adv to be

Pr[σ′ = σ]− 1/2 .

If the maximum advantage of any attacker against a KEM is negligible
(as a function of λ) then the KEM is said to be IND-CCA2 secure.

A KEM is only useful when coupled with a DEM (a data encapsulation
mechanism) to form a hybrid public-key encryption scheme. A DEM is
a symmetric algorithm that takes a message and a key, and encrypts the
message under that key. In order for the overall hybrid encryption scheme
to be secure, the KEM and the DEM must satisfy certain security proper-
ties. Happily these properties are independent (i.e. the security properties
that a KEM must have are independent of the security properties of the
DEM). For the overall encryption scheme to be IND-CCA2 secure (in the
sense given below) the KEM, in particular, must be IND-CCA2 secure.
For further details of hybrid constructions using KEMs and DEMs, and
their security properties, the reader is referred to [4].

3 The Security of an Encryption Scheme

We will require formal definitions for an asymmetric encryption scheme. It
will suit our purposes to draw a distinction between a deterministic and
probabilistic encryption schemes as they present slightly different chal-
lenges to the KEM designer. We will start by considering deterministic
encryption schemes.

Definition 2. A deterministic encryption scheme is a triple (G, E ,D)
where

– G is the key-generation algorithm which takes as input a security pa-
rameter 1λ and outputs a public/secret key-pair (pk, sk),

– E is the encryption algorithm which takes as input a message m ∈M
and the public-key pk and outputs a ciphertext C ∈ C,

– D is the decryption algorithm which takes as input a ciphertext C ∈ C
and the secret-key sk and outputs either a message m ∈ M or the
error symbol ⊥.

The weakest notion of security for a deterministic encryption scheme
is one-way security.

Definition 3. A deterministic encryption scheme (G, E ,D) is said to be
one-way if the probability that a polynomial time attacker A can invert
a randomly generated ciphertext C = E(m, pk) (where m is chosen at
random from M) is negligible as a function of λ. Such a cryptosystem is
often said to be secure in the OW-CPA model1.
1 OW for “one-way” and CPA for “chosen plaintext attack”. The term “chosen plain-

text attack” is used because the attacker is not allowed to make decryption queries.

A deterministic encryption scheme (G, E ,D) is said to be secure in the
OW-CPA+ model if the scheme is one-way even when the attacker has ac-
cess to an oracle that, when given a ciphertext C ∈ C, determines whether
C is a valid ciphertext or not, i.e. whether C is the correct encryption of
some message or not.

The idea of allowing an attacker access to an oracle that correctly
determines if a ciphertext is valid was first used in a paper by Joye,
Quisquater and Yung [6]. The paper used such an oracle to attack an
early version of the EPOC-2 cipher.

For our purposes, a probabilistic encryption scheme will be viewed as
a deterministic scheme whose encryption algorithm takes some random
seed as an extra input.

Definition 4. A probabilistic encryption scheme is a triple (G, E ,D) where

– G is the key-generation algorithm which takes as input a security pa-
rameter 1λ and outputs a public/secret key-pair (pk, sk),

– E is the encryption algorithm which takes as input a message m ∈M,
a random seed r ∈ R and the public-key pk and outputs a ciphertext
C ∈ C,

– D is the decryption algorithm which takes as input a ciphertext C ∈ C
and the secret-key sk and outputs either a message m ∈ M or the
error symbol ⊥.

To cement the idea that this is a probabilistic system we require that, for
all public keys pk that can be obtained from the key generation algorithm
with an input 1λ and for all m ∈M we have that

|{r ∈ R : E(m, r, pk) = C}| ≤ γ(λ)/|R|

where C ∈ C and γ(λ)/|R| is negligible as a function of λ.2

Analogous notions of OW-CPA and OW-CPA+ security can be de-
fined for probabilistic encryption schemes. However, there is another issue
that will affect our ability to design KEMs based on probabilistic encryp-
tion schemes - the need for a plaintext-ciphertext checking oracle.

Definition 5. For a asymmetric encryption scheme (G, E ,D), a plaintext-
ciphertext checking oracle is an oracle that, when given a pair (m,C) ∈
M× C, correctly determines whether C is an encryption of m or not.
2 This condition basically states that for any public key and ciphertext, there cannot

be two many choices for r that encrypt a message to that ciphertext.

Obviously, if (G, E ,D) is a deterministic algorithm then there exists
an efficient plaintext-ciphertext checking oracle, however the situation is
more complicated for a probabilistic encryption scheme. There are several
ways in which a plaintext-ciphertext checking oracle for a probabilistic en-
cryption scheme can be made be available to all parties in a security proof.
In particular, it might be possible to construct such an oracle because of
the nature of underlying intractability assumption (such as in the case of
an encryption scheme based on the gap Diffie-Hellman problem, see [9]).
Alternatively, it might be possible to simulate such an oracle using, say,
knowledge of the hash queries an attacker has made in the random oracle
model [2].

4 Analysing RSA-KEM

We present a method to construct a KEM from almost all one-way public-
key encryption schemes; this generalises the ideas used in RSA-KEM [12].

The construction of a KEM from a deterministic encryption scheme
(G, E ,D) is given in Table 1. This construction uses a key derivation func-
tion KDF . This function is intended to do more than simply format the
random number correctly as a key: it is meant to remove algebraic rela-
tions between inputs. It is usually constructed from a hash function and
will be modelled as a random oracle.

Table 1. A KEM derived from a deterministic encryption scheme

– Key generation is given by the key generation algorithm of the public-key encryp-
tion scheme (i.e. KEM .Gen = G).

– Encapsulation is given by:
1. Generate an element x ∈M uniformly at random.
2. Set C := E(x, pk).
3. Set K := KDF (x).
4. Output (K, C).

– Decapsulation of an encapsulation C is given by:
1. Set x := D(C, sk). If x =⊥ then output ⊥ and halt.
2. Set K := KDF (x).
3. Output K.

Theorem 1. Suppose (G, E ,D) is a deterministic asymmetric encryption
scheme that is secure in the OW-CPA+ model. Then the KEM derived
from (G, E ,D) in Table 1 is, in the random oracle model, IND-CCA2
secure.

The proof of this theorem is similar to the of Theorem 2.
This style of KEM can be easily extended to the case where the un-

derlying encryption scheme is probabilistic and not deterministic. The
construction is given in Table 2. Note that the encapsulation is included
in the input to the key derivation function to prevent the attacker from
breaking the scheme by finding a second ciphertext C ′ that decrypts to
the same value as the challenge ciphertext C.

Table 2. A KEM derived from a probabilistic encryption scheme

– Key generation is given by the key generation algorithm of the public-key encryp-
tion scheme (i.e. KEM .Gen = G).

– Encapsulation is provided by the following algorithm.
1. Generate elements x ∈M and r ∈ R uniformly at random.
2. Set C := E(x, r, pk).
3. Set K := KDF (x̄||C), where x̄ is a fixed length representation of the element

x ∈M.
4. Output (K, C).

– Decapsulation of an encapsulation C is given by the following algorithm.
1. Set x := D(C, sk). If x =⊥ then output ⊥ and halt.
2. Set K := KDF (x̄||C) where x̄ is a fixed length representation of the element

x ∈M.
3. Output K.

Theorem 2. Suppose (G, E ,D) is a probabilistic asymmetric encryption
scheme

– that is secure in the OW-CPA+ model, and
– for which there exists a plaintext-ciphertext checking oracle.

Then the KEM derived from (G, E ,D) in Table 2 is, in the random oracle
model, IND-CCA2 secure.

Proof See Appendix A

5 Analysing PSEC-KEM

Obviously it would be advantageous if we were able to remove the re-
liance on these non-optimal security criteria, i.e. produce a generic method
for constructing a KEM from an OW-CPA encryption scheme rather

than from an OW-CPA+ encryption scheme and requiring a plaintext-
ciphertext checking oracle. In this section, we present a method to con-
struct a KEM from a OW-CPA encryption scheme (for which there exists
a plaintext-ciphertext checking oracle); this generalises the ideas used in
PSEC-KEM [12].

Table 3 gives a construction for a KEM from a (deterministic or prob-
abilistic) asymmetric encryption scheme (G, E ,D). In the construction
Hash is a hash function and MGF is a mask generating function. A mask
generating function is similar to a key derivation function, in fact the same
constructions are used for both, but a mask generating function is used to
create a bit string that is used to mask a data value. We will model these
function as random oracles, hence care must be taken to ensure that the
outputs of the hash function and the mask generating function are suit-
ably independent. We also use a “smoothing function” φ : {0, 1}n2 →M,
where M is the message space of the encryption scheme (G, E ,D). This
function must have the property that for Y ′ drawn uniformly at random
from {0, 1}n2 and X ∈M we have

Pr[φ(Y ′) = X]− 1
|M|

is negligible.
For security, it is necessary that n is suitably large. Certainly n ≥ λ

would be sufficient. Of the other lengths, n1 should equal KEM.Keylen
and n2 merely has to be large enough so that there exists a function φ
which is suitably smooth.

Theorem 3. Suppose (G, E ,D) is an asymmetric encryption scheme that
is secure in the OW-CPA model and for which there exists a plaintext-
ciphertext checking oracle. Then the KEM derived from (G, E ,D) in Ta-
ble 3 is, in the random oracle model, IND-CCA2 secure.

A sketch proof is given in Appendix D.

6 A New Construction for a Deterministic Encryption
Scheme

Although the construction given in Section 5 (the generalisation of PSEC-
KEM) is based on weaker assumptions than the construction of Section 4,
it is not optimal as it requires us to assume the existence of a plaintext-
ciphertext checking oracle and is very complex. We now propose a sim-
pler construction for designing a KEM based on a deterministic encryp-
tion scheme with similarly weak security assumptions. In other words,

Table 3. A KEM derived from a OW-CPA secure encryption scheme

– Key-generation is given by G, i.e. KEM .Gen = G.

– Encapsulation is given by:
1. Generate a suitably large bit-string y ∈ {0, 1}n.
2. Set Y := Hash(y).
3. Split Y into two strings K ∈ {0, 1}n1 and Y ′ ∈ {0, 1}n2 where Y = K||Y ′.
4. Set X := φ(Y ′).
5. Set C1 := E(X, pk). (If E is probabilistic then generate a random seed r ∈ R

and set C1 := E(X, r, pk).)
6. Set C2 := y ⊕MGF (X).
7. Set C = (C1, C2).
8. Output (K, C).

– Decapsulation of an encapsulation C is given by:
1. Parse C as (C1, C2).
2. Set X := D(C1, sk). If x =⊥ then output ⊥ and halt.
3. Set y = C2 ⊕MGF (X).
4. Set Y = Hash(y).
5. Split Y into two strings K ∈ {0, 1}n1 and Y ′ ∈ {0, 1}n2 where Y = K||Y ′.
6. Check that φ(Y ′) = X. If not, output ⊥ and halt.
7. Output K.

we build a secure KEM from a deterministic encryption scheme that is
secure in the OW-CPA model, as opposed to the OW-CPA+ model as
in Section 4. The construction can be viewed as a simpler version of the
REACT construction [10].

Table 4 gives a construction of a KEM based on a deterministic asym-
metric encryption scheme (G, E ,D). The scheme makes use of a key deriva-
tion function KDF and a hash function Hash. These functions will be
modelled as random oracles and so care must be taken that their outputs
are suitably independent.

Theorem 4. Suppose that (G, E ,D) is a deterministic encryption algo-
rithm that is secure in the OW-CPA model. Then the KEM derived from
(G, E ,D) in Table 4 is, in the random oracle model, IND-CCA2 secure.

Proof See Appendix B
This construction also has the advantage that the decryption algo-

rithm need not return a unique solution but need only return a small
subset of the message space that includes the original message, as, with
high probability, the original message will be the only message in the
subset that hashes to give the correct value of C2. We will make heavy
use of this fact in the specification of Rabin-KEM (see Sect. 8).

Table 4. A KEM derived from an OW-CPA secure, deterministic encryption scheme

– Key-generation is given by G, i.e. KEM .Gen = G.

– Encapsulation is given by:
1. Generate a suitably large bit-string x ∈M.
2. Set C1 := E(x, pk).
3. Set C2 := Hash(x).
4. Set C := (C1, C2).
5. Set K := KDF (x).
6. Output (K, C).

– Decapsulation of an encapsulation C is given by:
1. Parse C as (C1, C2).
2. Set x := D(C1, sk). If x =⊥ then output ⊥ and halt.
3. Check that C1 = E(x, pk). If not, output ⊥ and halt. (Note, this step may

be ignored if there exists only one ciphertext associated with each message or
if it is computationally infeasible for an attacker to find two ciphertexts that
decrypt to the same value.)

4. Check that C2 = Hash(x). If not, output ⊥ and halt.
5. Set K := KDF (x).
6. Output K.

7 A New Construction for a Probabilistic Encryption
Scheme

Although the previous KEM construction can be generalised to be used
with a probabilistic encryption scheme, the security proof still relies on
the existence of a plaintext-ciphertext checking oracle (which is always
easily constructed for a deterministic encryption algorithm). We now give
a construction for a probabilistic encryption scheme, loosely based on the
ideas of [?], that does not require a plaintext-ciphertext checking oracle.
It is interesting to note, however, that this construction cannot be used
for a deterministic scheme.

Table 5 gives the construction of a KEM based on a OW-CPA secure,
probabilistic encryption scheme. Furthermore the proof of security for this
construction does not require there to exist a plaintext-ciphertext check-
ing oracle. The scheme makes use of a key derivation function KDF and a
hash function Hash. These functions will be modelled as random oracles
and so care must be taken that their outputs are suitably independent.

Theorem 5. Suppose that (G, E ,D) is a probabilistic encryption algo-
rithm that is secure in the OW-CPA model. Then the KEM derived from
(G, E ,D) in Table 5 is, in the random oracle model, IND-CCA2 secure.

Proof See Appendix C

Table 5. A KEM derived from an OW-CPA secure, probabilistic encryption scheme

– Key-generation is given by G, i.e. KEM .Gen = G.

– Encapsulation is given by:
1. Generate a suitably large bit-string x ∈M.
2. Set r := Hash(x).
3. Set C := E(x, r, pk).
4. Set K := KDF (x).
5. Output (K, C).

– Decapsulation is given by:
1. Set x := D(C, sk). If x =⊥ then output ⊥ and halt.
2. Set r := Hash(x).
3. Check that E(x, r, pk) = C. If not, output ⊥ and halt.
4. Set K := KDF (x).
5. Output K.

8 Case study: Rabin-KEM

We demonstrate the power of these results by proposing a new KEM
whose security is equivalent to factoring: Rabin-KEM. The Rabin-KEM
construction will be based on the generic construction given in Sect. 6
and the Rabin trapdoor permutation [8, 11]. The algorithm is described
in Table 6.

Theorem 6. Providing the factoring problem is hard, Rabin-KEM is, in
the random oracle model, IND-CCA2 secure.

Proof It is well known that the Rabin trapdoor function is one-way pro-
viding that the factoring assumption is hard [11]. Therefore, given that
the factoring problem is intractable, the given KEM is IND-CCA2 secure
in the random oracle model by Theorem 4. ut

This KEM is both and efficient and secure, being the first KEM ever
proposed whose security depends on the assumption that factoring is in-
tractable. Of course there is a chance that the decryption algorithm will
fail, i.e. that KEM .Decap(C, sk) =⊥ even though C is actually a valid en-
capsulation of a key K. However this will only happen if there is a collision
in the hash function, which, as we model the hash function as a random
oracle, only happens with probability 2−Hash.Len (where Hash.Len is the
length of the output of the hash function).

Table 6. Rabin-KEM

Key Generation On input of 1λ for some integer λ > 0,

1. Randomly generate two distinct primes p and q of bit length λ.
2. Set n := pq.
3. Set pk := (n) and sk := (p, q).
4. Output (pk, sk).

Encapsulation On input of a public key PK,

1. Randomly generate an integer x ∈ [0, n).
2. Set C1 := x2 mod n.
3. Set C2 := Hash(x).
4. Set C := (C1, C2).
5. Set K := KDF (x).
6. Output (K, C).

Decapsulation On input of an encapsulated key C and a secret key sk.

1. Parse C as (C1, C2).
2. Check that C1 is a square modulo n. If not, output ⊥ and halt.
3. Compute the four square roots x1, x2, x3, x4 of C1 modulo n using the secret key

sk.
4. If there exists no value 1 ≤ i ≤ 4 such that Hash(xi) = C2 then output ⊥ and

halt.
5. If there exists more than one value 1 ≤ i ≤ 4 such that Hash(xi) = C2 then output
⊥ and halt.

6. Let x be the unique square root of C1 modulo n for which Hash(x) = C2.
7. Set K := KDF (x).
8. Output K

9 Conclusion

This paper has provided four generic constructions for key encapsulation
mechanisms (KEMs): two generalisations of existing KEMs and two new
KEMs. These results show that KEMs can be constructed from almost
any trapdoor function. We also proposed a new KEM: Rabin-KEM. This
is a new fast, secure KEM based on the intractability of factoring large
numbers.

Acknowledgements

I would like to thank Victor Shoup, Louis Granboulan and Kenny Pater-
son for some very useful discussions in this area. Nigel Smart and James
Birkett both deserve thanks for pointing out errors in some of the proofs.
As always the help of Christine Swart has been invaluable.

References

1. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. In H. Krawczyk, editor, Advances
in Cryptology – Crypto ’98, volume 1462 of Lecture Notes in Computer Science,
pages 26–45. Springer-Verlag, 1998.

2. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In Proc. of the First ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

3. D. Boneh, A. Joux, and A. Nguyen. Why textbook ElGamal and RSA encryption
are insecure. In T. Okamoto, editor, Advances in Cryptology – Asiacrypt 2000,
volume 1976 of Lecture Notes in Computer Science, pages 30–43. Springer-Verlag,
2000.

4. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. Available from
http://shoup.net/, 2002.

5. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22:644–654, 1976.

6. M. Joye, J. Quisquater, and M. Yung. On the power of misbehaving adversaries
and security analysis of the original EPOC. In D. Naccache, editor, Topics in
Cryptography – CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science,
pages 208–222. Springer-Verlag, 2001.

7. S. Lucks. A variant of the Cramer-Shoup cryptosystem for groups of unknown
order. In Y. Zheng, editor, Advances in Cryptology – Asiacrypt 2002, volume 2501
of Lecture Notes in Computer Science, pages 27–45. Springer-Verlag, 2002.

8. A. J. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, 1997.

9. T. Okamoto and D. Pointcheval. The gap problems: A new class of problems for the
security of cryptographic schemes. In K. Kim, editor, Public Key Cryptography, vol-
ume 1992 of Lecture Notes in Computer Science, pages 104–118. Springer-Verlag,
2001.

10. T. Okamoto and D. Pointcheval. REACT: Rapid enhanced-security asymmetric
cryptosystem transform. In D. Naccache, editor, Proceedings of CT-RSA 2001, vol-
ume 2020 of Lecture Notes in Computer Science, pages 159–175. Springer-Verlag,
2001.

11. M. O. Rabin. Digitalized signatures and public-key functions as intractable as
factorization. Technical Report MIT/LCS/TR-212, MIT Laboratory for Computer
Science, 1979.

12. V. Shoup. A proposal for the ISO standard for public-key encryption (version 2.0).
Available from http://shoup.net/, 2001.

A Proof of Theorem 2

This is a simple result. We will use standard techniques to prove a more
detailed result.

Theorem 7. Let (G, E ,D) be an encryption scheme and let KEM be the
KEM derived from (G, E ,D) using the construction described in Table 2.

If there exist an attacker A that, in the random oracle model, breaks KEM
in the IND-CCA2 model

– with advantage ε,
– in time t,
– makes at most qD queries to the decapsulation oracle,
– and at most qK queries to the random oracle that represents the key

derivation function,

then there exists an algorithm that inverts the underlying encryption func-
tion in the OW-CPA+ model (and makes use of a plaintext-ciphertext
checking oracle) with probability ε′ and in time t′ where

ε′ ≥ ε− qD/|M| , (1)
t′ = t . (2)

Proof We assume that there exists an attacker for the KEM and use this to
construct an algorithm that can break the underlying encryption scheme.
Suppose A is an attacker that breaks the KEM with the properties stated
above.

Consider the following algorithm that takes as input a public-key pk
for the underlying encryption scheme and a challenge ciphertext C∗. This
algorithm makes use of two lists: KDFList which stores the answers to
queries made to the KDF oracle and DecList which stores the answers
to queries made to the decapsulation oracle.

1. Prepare two empty lists KDFList and DecList.
2. Randomly generate a bit-string K∗ of length KEM .KeyLen.
3. Pass the public key to pk to A.
4. Allow A to run until it requests a challenge encapsulation. If the

attacker requests the evaluation of the key derivation function KDF
on an input z then the following steps are performed:
(a) Check to see if (z, K) ∈ KDFList for some value of K. If so,

return K.
(b) Check to see if z can be parsed as x̄||C for some fixed length

representation of a message x ∈ M and a ciphertext C ∈ C. If
not, randomly generate an appropriately sized K, add (z,K) to
KDFList and return K.

(c) Check to see if C is an encryption of x using the plaintext-ciphertext
checking oracle. If not, randomly generate an appropriately sized
K, add (z, K) to KDFList and return K.

(d) Check to see if there exists an entry (C,K) on DecList. If so, add
(z,K) to KDFList and return K.

(e) Randomly generate an appropriately sized K, add (z, K) to KDFList,
add (C, K) to DecList and return K.

If the attacker requests the decapsulation of an encapsulation C then
the following steps are performed:
(a) Check to see if C = C∗. If so, return ⊥.
(b) Check to see if (C, K) ∈ DecList for some value K. If so, return

K.
(c) Check to see if C is a valid ciphertext or not (using the oracle

provided by the CPA+ model). If not, add (C,⊥) to DecList and
return ⊥.

(d) Check to see if there exists an entry (x̄||C, K) on KDFList such
that C is an encryption of x (using the plaintext-ciphertext check-
ing oracle). If so, add (C, K) to DecList and return K.

(e) Otherwise randomly generate an appropriately sized K, add (C, K)
to DecList and return K.

5. When the attacker requests a challenge encapsulation, return (K∗, C∗)
6. Allow the attacker to run until it outputs a bit σ′. Answer all oracle

queries as before.
7. Check to see if there exists a pair (z, K) ∈ KDFList such that z can

be decomposed as x̄||C∗ where x̄ is the fixed length representation of
a message x ∈ M and C∗ is an encryption of x (using the plaintext-
ciphertext checking oracle). If so, output x and halt.

8. Otherwise randomly generate x ∈M. Output x and halt.

This algorithm perfectly simulates the attack environment for A up
unless one of two events occur:

– The attacker queries the decryption oracle with the challenge cipher-
text C∗ before the challenge ciphertext has been issued to the attacker
(i.e. in Step 4). In this case the simulation will return ⊥ when it should
return the decryption of C∗. We will denote the event that this hap-
pens as E1.

– The attacker queries the KDF oracle on the x̄||C∗ where x̄ is the fixed
length representative of x∗ = D(C, sk). In this case the simulation
will return always return a random value (where it should return K∗

half the time). We will denote the event that this happens as E2.

Therefore,

1/2 + ε = Pr[A wins]

= Pr[A wins|E1]Pr[E1] + Pr[A wins|¬E1]Pr[¬E1]
≤ Pr[E1] + Pr[A wins|¬E1]
≤ qD/|M|+ Pr[A wins|¬E1]

as A has no knowledge of C∗ before the challenge is issued and so will
only submit C∗ to the decryption oracle by pure chance. Since A makes
at most qD oracle queries and the underlying message x∗ = D(C∗, sk) is
chosen at random, the probability that A submits C∗ to the decryption
oracle is bounded by qD/|M|. We now have that

1/2 + ε ≤ qD/|M|+ Pr[A wins|¬E1]
= qD/|M|+ Pr[A wins|¬E1 ∧ E2]Pr[E2|¬E1] + Pr[A wins|¬E1 ∧ ¬E2]Pr[¬E2|¬E1]
≤ qD/|M|+ Pr[A wins|¬E1 ∧ E2] + Pr[A wins|¬E1 ∧ ¬E2]
= qD/|M|+ ε′ + 1/2 .

This is because if A does not query the KDF oracle on x̄||C∗ where
x = D(C∗, sk) then (as we are working in the random oracle model) A
can have no advantage in winning the IND-CCA2 game; and if A wins
the IND-CCA2 game and both E2 occurred and E1 did not occur, then
our solver wins the OW-CPA+ game. Hence,

ε′ ≥ ε− qD/|M| .
ut

B Proof of Theorem 4

We use standard techniques to prove the following, slightly more detailed
result.

Theorem 8. Let (G, E ,D) be a deterministic encryption scheme and let
KEM be the KEM derived from (G, E ,D) using the construction described
in Table 4. If there exists an attacker A that, in the random oracle model,
breaks KEM in the IND-CCA2 model

– with advantage ε,
– in time t,
– and makes at most qD decapsulation queries,
– at most qH queries to the random oracle that represents the hash func-

tion,
– and at most qK queries to the random oracle that represents the key

derivation function,

then there exists an algorithm that inverts the underlying encryption func-
tion with probability ε′ and in time t′ where

ε′ ≥ ε− qD

2Hash.Len
− qD

|M| , (3)

t′ ≤ t + (qH + qK + qD)T , (4)

where Hash.Len is the length of the output of the hash function Hash and
T is the time taken to evaluate the encryption function E.

Proof We assume that there exists an attacker for the KEM and use this to
construct an algorithm that can break the underlying encryption scheme.
Suppose A is an attacker that breaks the KEM with the properties stated
above.

First we slightly change the environment that A operates in. Let game
1 be the game in whichA attacks the KEM as described in the IND-CCA2
environment described in Sect. 3. Let game 2 be similar to game 1 except
that

– the challenge encapsulation (K∗, C∗) is chosen at the beginning of
the algorithm and if the attacker ever requests the decapsulation of
C∗ = (C∗

1 , C∗
2) then the decapsulation algorithm returns ⊥,

– instead of allowing the attacker A access to the “real” decapsulation
oracle, hash function oracle and KDF oracle we only allow A to have
access to the “partially simulated” versions of these oracles described
below.

The simulated oracles make use of two lists HashList and KDFList,
both of which are initially empty. If the attacker requests the evaluation
of the hash function Hash on an input x then the following steps are
performed:

1. If (x, hash) ∈ HashList for some value of hash then return hash.
2. If x = D(C∗

1 , sk) then return Hash(x).
3. Otherwise randomly generate an appropriately sized hash, add (x, hash)

to HashList and return hash.

Hence the hash function is changed to a random function with the proviso
that it must agree with the original hash function on the input D(C∗

1 , sk).
This simulation is equivalent to some random oracle and every random
oracle can be represented by this simulation. Similarly, if the attacker
requests the evaluation of the key derivation function KDF on an input
x then the following steps are performed:

1. If (x,K) ∈ KDFList for some value of K then return K.
2. If x = D(C∗

1 , sk) then return KDF (x).
3. Otherwise randomly generate an appropriately sized K, add (x,K) to

KDFList and return K.

If the attacker requests the evaluation of decapsulation function on the
encapsulated key (C1, C2) then the following steps are performed:

1. If C1 = C∗
1 then return ⊥.

2. Check that there exists a unique x ∈M such that (x,C2) ∈ HashList
and E(x, pk) = C1. If not, return ⊥.

3. Compute K := KDF (x) using the KDF algorithm described above.
4. Return K.

To analyse the effects of only allowing A to have access to the simulated
oracles we require the following simple lemma [1,4].

Lemma 1. If A, B and E are events is some probability space and that
Pr[A|¬E] = Pr[B|¬E] then |Pr[A]− Pr[B]| ≤ Pr[E].

Let A be the event that A succeeds in breaking the KEM with access
to the real oracles and let B be the event that A succeeds in breaking the
KEM with access to the simulated oracles. Let E be the event that either

1. A queries the decapsulation oracle on the challenge encapsulation be-
fore the challenge encapsulation is given to A, or

2. A queries the decapsulation oracle on some encapsulation (C1, C2)
where Hash(D(C1, sk)) = C2 but A has not queried the hash function
simulator on the input D(C1, sk).

If E does not occur then A will receive the same responses to his queries
regardless of whether it is querying the real oracles or the simulated ora-
cles. Hence Pr[A|¬E] = Pr[B|¬E].

Since the challenge ciphertext has to be chosen completely at random,
the probability that E occurs because A queries the decapsulation oracle
on the challenge encapsulation before it has been issued is bounded above
by qD/|M|. (Since the message is drawn randomly from M we can bound
the probability that A guesses C∗

1 in a single oracle query by 1/|M|. If
this happens, then the attacker may know D(C∗

1 , sk) and so may also
know C∗

2 = Hash(D(C∗
1 , sk)). Hence, we may only bound the probability

that this occurs by qD/|M|.) Since the hash function is modelled as a
random oracle, the probability that A queries the decapsulation oracle
on some encapsulation (C1, C2) where Hash(D(C1, sk)) = C2 but A has

not queried the hash function Hash on the input D(C1, sk) is at most
qD/2Hash.Len. Hence the advantage of A in game 2 is least

ε− qD

2Hash.Len
− qD

|M| . (5)

Let E′ be the event that, in game 2, the attacker queries either the
hash function simulator or the key derivation function oracle with the
input x∗ = D(C∗

1 , sk). Since the attacker can have no knowledge of the
whether KDF (x∗) = K∗ or not unless E′ occurs we have that

Pr[E′] ≥ ε− qD

2Hash.Len
− qD

|M| . (6)

Consider the following algorithm that takes as input a public key pk
for the underlying encryption scheme and a challenge ciphertext C∗

1 .

1. Prepare two empty lists HashList and KDFList.
2. Generate random bit strings C∗

2 of length Hash.Len and K∗ of length
KEM .KeyLen. Set C∗ := (C∗

1 , C∗
2).

3. Pass the public key pk to A.
4. Allow the attackerA to run until it requests a challenge encapsulation.

If the attacker requests the evaluation of the hash function Hash on
an input x then the following steps are performed:
(a) If (x, hash) ∈ HashList for some value of hash then return hash.
(b) Otherwise randomly generate an appropriately sized hash, add

(x, hash) to HashList and return hash.
If the attacker requests the evaluation of the KDF KDF on an input
x then the following steps are performed:
(a) If (x,K) ∈ KDFList for some value of K then return K.
(b) Otherwise randomly generate an appropriately sized K, add (x, K)

to KDFList and return K.
If the attacker requests the evaluation of decapsulation function on
the encapsulated key (C1, C2) then the following steps are performed:
(a) If C1 = C∗

1 then return ⊥.
(b) Check that there exists a unique x ∈ M such that (x,C2) ∈

HashList and E(x, pk) = C1. If not, return ⊥.
(c) Compute K := KDF (x) using the simulator described above.
(d) Return K.

5. When the attacker requests a challenge encapsulation pass the pair
(K∗, C∗) to the attacker.

6. Allow the attacker to run until it outputs a bit σ′. Answer all oracle
queries with the simulators described above.

7. Check to see if there exists some (x, hash) ∈ HashLish or (x,K) ∈
KDFList such that E(x, pk) = C∗

1 . If so, output x and halt.
8. Randomly generate x ∈M. Output x and halt.

This algorithm perfectly simulates the attack environment for the at-
tacker A in game 2, up until the point where event E′ occurs. However, if
E′ occurs then the above algorithm will correctly output x∗ = D(C∗

1 , sk).
Hence the above algorithm will correctly invert a randomly generated
ciphertext with probability at least

ε− qD

2Hash.Len
− qD

|M| . (7)

This value is negligible providing ε is negligible, hence the KEM is secure
in the IND-CCA2 model providing the underlying encryption scheme is
secure in the OW-CPA model. ut

C Proof of Theorem 5

Again, we prove a slightly more detailed result.

Theorem 9. Let (G, E ,D) be a probabilistic encryption scheme and let
KEM be the KEM derived from (G, E ,D) using the construction described
in Table 5. If there exists an attacker A that, in the random oracle model,
breaks KEM in the IND-CCA2 model

– with advantage ε,
– in time t,
– and makes at most qD decapsulation queries,
– at most qH queries to the random oracle that represents the hash func-

tion,
– and at most qK queries to the random oracle that represents the key

derivation function.

then there exists an algorithm that inverts the underlying encryption func-
tion with probability ε′ and in time t′ where

ε′ ≥ 1
qD + qH + qK

(ε− qD

|M| −
γqD

|R|) , (8)

t′ ≈ t , (9)

where γ is defined in Definition 4.

Proof The proof is similar to that given in Appendix B.
Let game 1 be the game in which A attacks the KEM as described in

the IND-CCA2 environment described in Sect. 3. Let game 2 be similar
to game 1 except that

– the challenge encapsulation (K∗, C∗) is chosen at the beginning of the
algorithm and if the attacker ever requests the decapsulation of C∗

then the decapsulation algorithm returns ⊥,
– instead of allowing the attacker A access to the “real” decapsulation

oracle, hash function oracle and KDF oracle we only allow A to have
access to the “partially simulated” versions of these oracles described
below.

We simulate the hash function oracle and the KDF oracle exactly as
before, making use of two lists, HashList and KDFList, both of which
are initially empty. If the attacker requests the evaluation of the hash
function Hash on an input x then the following steps are performed:

1. If (x, hash) ∈ HashList for some value of hash then return hash.
2. If x = D(C∗, sk) then return Hash(x).
3. Otherwise randomly generate an appropriately sized hash, add (x, hash)

to HashList and return hash.

If the attacker requests the evaluation of the key derivation function KDF
on an input x then the following steps are performed:

1. If (x,K) ∈ KDFList for some value of K then return K.
2. If x = D(C∗, sk) then return KDF (x).
3. Otherwise randomly generate an appropriately sized K, add (x,K) to

KDFList and return K.

If the attacker requests the evaluation of the decapsulation function on
the encapsulated key C then the following steps are performed:

1. If C = C∗ then return ⊥.
2. For each pair (x, hash) ∈ HashList, check whether E(x, hash, pk) =

C. If no such pair exists then return ⊥.
3. If there exists such a pair (x, hash) then run the simulator for the key

derivation function on the input x to get a key K.
4. Return K.

As before, we note that game 1 and game 2 are identical except if
either of the following events occur:

1. A queries the decapsulation oracle on the challenge encapsulation be-
fore the challenge encapsulation is given to A, or

2. A queries the decapsulation oracle on some encapsulation C where
x = D(C, sk) and C = E(x,Hash(x), pk) but A has not queried the
hash function simulator on the input x.

The probability that the first event occurs is bounded above by qD/|M|
(as there exists |M| valid encapsulations). The probability that the sec-
ond event occurs is bounded above by qDγ/|R| (where γ is defined in
Definition 4). Hence the advantage of A in game 2 is at least

ε− qD(
1
|M| +

γ

|R|) . (10)

Let E′ be the event that, in game 2, the attacker queries either the
hash function simulator or the key derivation function oracle with the
input x∗ = D(C∗, sk). Again, we have

Pr[E′] ≥ ε− qD(
1
|M| +

γ

|R|) . (11)

Now, consider the following algorithm that takes as input a public key
pk for the underlying encryption scheme and a challenge ciphertext C∗

(which is the encryption of some randomly chosen message x∗ ∈M).

1. Prepare two empty lists HashList and KDFList.
2. Generate a random bit strings K∗ of length KEM .KeyLen.
3. Pass the public key pk to A.
4. Allow the attackerA to run until it requests a challenge encapsulation.

If the attacker requests the evaluation of the hash function Hash on
an input x then the following steps are performed:
(a) If (x, hash) ∈ HashList for some value of hash then return hash.
(b) Otherwise randomly generate an appropriately sized hash, add

(x, hash) to HashList and return hash.
If the attacker requests the evaluation of the KDF KDF on an input
x then the following steps are performed:
(a) If (x,K) ∈ KDFList for some value of K then return K.
(b) Otherwise randomly generate an appropriately sized K, add (x, K)

to KDFList and return K.
If the attacker requests the evaluation of decapsulation function on
the encapsulated key C then the following steps are performed:
(a) If C = C∗ then return ⊥.

(b) Check that there exists a unique x ∈ M such that (x, hash) ∈
HashList and E(x, hash, pk) = C for some value of hash. If not,
return ⊥.

(c) Run the simulator for the key derivation function on the input x
to get a key K.

(d) Return K.
5. When the attacker requests a challenge encapsulation pass the pair

(K∗, C∗) to the attacker.
6. Allow the attacker to run until it outputs a bit σ′. Answer all oracle

queries with the simulators described above.
7. Pick, uniformly at random, some value x from the set of x such that

either (x, hash) ∈ HashList or (x,K) ∈ KDFList. Output x as the
inverse of C∗.

This algorithm perfectly simulates the environment for the attacker in
game 2 up until the point in which E′ occurs. However if E′ occurs then
the above correctly output x∗ with probability 1/(qD + qH + qK). Hence
the above algorithm will correctly invert the encryption of a randomly
generated message with probability at least

1
qD + qH + qK

(ε− qD

|M| −
γqD

|R|) . (12)

This value is negligible providing ε is negligible, hence the KEM is secure
in the IND-CCA2 model providing the underlying encryption scheme is
secure in the OW-CPA model. ut

D Proof of Theorem 3

Again, we actually prove a slightly more detailed result. Suppose A is an
attacker which breaks the KEM in the IND-CCA2 model, and that this
attacker

– has advantage ε,
– makes at most qD queries to the decapsulation oracle,
– makes at most qM queries to the mask generating function oracle,
– and at most qH queries to the hash function oracle.

We will use this to construct an algorithm that breaks the underlying
cryptosystem. In constructing the algorithm that inverts the underlying
cryptosystem we will be challenged to invert a random ciphertext C∗

1 (we

will use the superscript ∗ to denote variables associated with the challenge
ciphertext). For convenience we set

r∗ = C∗
2 ⊕D(C∗

1 , sk)

and note that this constrains the behaviour of Hash on r∗.
We construct the challenge encapsulation pair (K∗, C∗) by selecting a

random KEM .Keylen-bit integer K∗ and a random n-bit integer C∗
2 and

setting C∗ = (C∗
1 , C∗

2).
We need to tweak the environment that the attacker runs in, so that

we may successfully simulate all the oracles that it has access to. Let
Game 1 be the normal IND-CCA2 game. Let Game 2 be the game where
the challenge encapsulation pair (K∗, C∗) is generated at the start of
the algorithm, and if the attacker queries the decapsulation oracle on the
input C∗ then the decapsulation oracle responds with ⊥. If A1 is the event
that the attacker wins in Game 1 and A2 is the event that the attacker
wins in Game 2 then, using Lemma 1, we have

|Pr[A1]− Pr[A2]| ≤ qD

2n · |C| .

Now, since we do not know D(C∗
1 , sk), we will find it hard to simulate

the decapsulation of encapsulations of the form (C∗
1 , C2). We can avoid

this problem by refusing to decapsulate any encapsulation of this form.
Let Game 3 be similar to Game 2, but with the decapsulation oracle will
outputting ⊥ whenever it is queried with an encapsulation of the form
(C∗

1 , C2). Let A3 be the event that the attacker wins in Game 3 and let
E be the event that an encapsulation is submitted to the decapsulation
oracle which would have different decapsulations in Game 2 and Game
3. Since Game 2 and Game 3 are identical if E does not occur we must
have

|Pr[A2]− Pr[A3]| ≤ Pr[E] .

Now E will only occur if the attacker A submits a ciphertext (C∗
1 , C2),

with C2 6= C∗
2 , for which the last n2-bits of

Hash(C2 ⊕D(C∗
1 , sk))

maps, under φ, to D(C∗
1 , sk). Since C2 ⊕ D(C∗

1 , sk) 6= r∗ and Hash is a
random oracle, Hash(C2⊕D(C∗

1 , sk)) will be a random bit-string and so
φ will map the last n2 bits of this onto a completely random element of
M. So

|Pr[A3]− Pr[A4]| ≤ Pr[E] ≤ qD

|M| .

We are now in a position to describe the simulators. We start by ini-
tialising four empty lists: DecList, MaskList, MGFList and HashList.
If the attacker requests the evaluation of the mask generating function
MGF on the input X then the following steps are performed:

1. Check to see if there exists a pair (X,Mask) ∈ MGFList, for some
value Mask. If so, output Mask and halt.

2. Check to see if X ∈ M. If not, generate Mask uniformly at random
from the set {0, 1}n, add (X, Mask) to MGFList and output Mask.

3. Check to see if E(X, pk) = C∗
1 . If so, output X as the inverse of C∗

1

and terminate the entire algorithm.
4. Check to see if (E(X, pk),Mask) ∈ MaskList for some value of Mask.

If so, output Mask and halt.
5. Generate Mask uniformly at random from the set {0, 1}n, add (X,Mask)

to MGFList, add (E(X, pk),Mask) to MaskList and output Mask.

If the attacker requests the decapsulation of the encapsulation (C1, C2)
then the following steps are performed:

1. Check to see if (C1, C2,K) ∈ DecList. If so, output K and halt.
2. Check to see if C1 = C∗

1 . If so, output ⊥ and halt.
3. Check to see if (C1,Mask) ∈ MaskList for some value of Mask. If

not, generate Mask uniformly at random from the set {0, 1}n and add
(C1,Mask) to MaskList.

4. Set r = C2 ⊕Mask.
5. Set R = Hash(r).
6. Split R into two strings K ∈ {0, 1}n1 and R′ ∈ {0, 1}n2 where R =

K||R′.
7. Check to see if C1 = E(φ(R′), pk). If not, add (C1, C2,⊥) to DecList,

output ⊥ and halt.
8. Add (C1, C2,K) to DecList, output K and halt.

If the attacker (or the decryption function) requests the evaluation of the
hash function Hash on the input r then the following steps are performed:

1. Check to see if (r,R) ∈ HashList for some value of R. If so, output
R and halt.

2. Otherwise, generate R uniformly at random from the set {0, 1}n1+n2 ,
add (r,R) to HashList and output R.

We use these simulators in the standard way, as shown in Section D, to in-
vert the ciphertext C∗

1 . We therefore require that the simulators perfectly
simulate the attacker’s normal environment up until the point where the

inverse of C∗
1 is found. It is with some regret that we note that this is

not the case at the moment, because when the hash function is queried
on the input r∗ the simulators will output a random bit string instead
of the “proper” answer R∗. We must tweak the environment slightly to
show that this does not make a significant difference.

Let Game 4 be similar to Game 3 but, if the hash function is evaluated
on the input r∗ before the mask generating function is evaluated on the
input D(C∗

1 , sk), then the hash function outputs an appropriately sized
bit-string that has been generated at random. The simulators certainly
perfectly simulate this environment. Let A4 be the event that the attacker
wins in Game 4 and let E be the event that the hash function is evaluated
on the input r∗ before the mask generating function is evaluated on the
input D(C∗

1 , sk). Since Game 3 and Game 4 are identical provided E does
not occur, so

|Pr[A3]− Pr[A4]| ≤ Pr[E] .

Now, since the mask generating function has not been evaluated onD(C∗
1 , sk),

the attacker can have no knowledge of MGF (D(C∗
1 , sk)) = C∗

2 ⊕ r∗. So,
since C∗

2 is known, the attacker can have no knowledge of r∗ and so the
only way that the hash function Hash can be evaluated on r∗ is by chance.
Therefore,

|Pr[A3]− Pr[A4]| ≤ Pr[E] ≤ qH + qD

2n

Now that we have now simulated the environment successfully, we can
use standard techniques to show that the probability that we successfully
invert the given ciphertext is at least the advantage of the attacker in
Game 4. Hence the probability that we successfully invert the ciphertext
in Game 1 is at least

Adv − qH + qD

2n
− qD

|M| −
qD

2n|C| .

So, if there exists an attacker for the KEM that has non-negligible advan-
tage then there exists an algorithm that inverts the underlying encryption
scheme with non-negligible advantage. Alternatively, if the underlying
encryption scheme is one-way secure then the KEM will be IND-CCA2
secure.

