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Abstract. Encrypt-and-sign, where one encrypts and signs a message in parallel, is usually not recommended
for confidential message transmission as the signature may leak information about the message. This motivates
our investigation of confidential signature schemes, which hide all information about (high-entropy) input mes-
sages. In this work we provide a formal treatment of confidentiality for such schemes. We give constructions
meeting our notions, both in the random oracle model and the standard model. As part of this we show that
full domain hash signatures achieve a weaker level of confidentiality than Fiat-Shamir signatures. We then
examine the connection of confidential signatures to signcryption schemes. We give formal security models
for deterministic signcryption schemes for high-entropy and low-entropy messages, and prove encrypt-and-
sign to be secure for confidential signature schemes and high-entropy messages. Finally, we show that one can
derandomize any signcryption scheme in our model and obtain a secure deterministic scheme.

1 Introduction

A common mistake amongst novice cryptographers is to assume that digital signature schemes provide
some kind of confidentiality service to the message being signed. The (faulty) argument in support of
this statement is (a) that all signature schemes are of the “hash-and-sign” variety, which apply a hash
function to a message before applying any kind of keyed operation, and (b) that a one-way hash function
will hide all partial information about a message. Both facets of this argument are incorrect. However, it
does suggest that notions of confidentiality for signature schemes are an interesting avenue of research.

The question of confidentiality of hash functions in signature schemes was previously considered
by Canetti [7] as “content-concealing signatures”; however the original treatment only serves to moti-
vate the concept of perfect one-way hash functions [7, 8]. We provide a more formal treatment here.
The question of entropic security has been considered by several other authors. Dodis and Smith stud-
ied entropic secure primitives requiring that no function leaks their input [11]. Russell and Wang [21]
consider the security of symmetric encryption schemes based on high-entropy messages, and several au-
thors have considered the security of asymmetric encryption schemes based on high-entropy messages
[3, 4, 6]. However, we are the first authors to consider the confidentiality of signatures and signcryption
schemes in this scenario.

We believe that the concept of confidential signatures is intrinsically interesting and may prove to
be useful in the construction of protocols in which two entities need to check that they are both aware
of a particular message which (a) contains some confidential information, such as a password, and (b)
contains a high entropy component, such as a confidential nonce.

Defining Confidential Signatures. Our first contribution is to define confidential signatures. Our starting
point are high-entropy messages (signatures for messages with low entropy inevitably leak through
the verification algorithm of the signature scheme). Our definitions are based on previous efforts for
deterministic public-key encryption [3], and yield three models for confidential signature schemes:

– Weak confidentiality means that no information is leaked to a passive adversary, except possibly for
information related to the technical details of the signature scheme.

– Mezzo confidentiality means that no information is leaked to a passive adversary (in possession
of the verification key). Note that this is in contrast to deterministic public-key encryption where
information cannot be hidden in such circumstances [3].

– Strong confidentiality means that no information is leaked to an active adversary (in possession of
the verification key).

Our definitions are general enough to cover probabilistic and deterministic signature schemes, although
we need an additional stipulation in the latter case, preventing the case where the leaked information is
the unique signature itself.
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Relation to Anonymous Signatures. There are similarities between confidential signatures and anony-
mous signatures [15, 22]. Anonymous signatures hide the identity of the signer of a high-entropy mes-
sage, whereas confidential signatures hide all the information about the message itself. This is rela-
tionship between these two primitives is similar to the relationship between anonymous encryption and
traditional public key encryption.

Constructing Confidential Signatures. We then show how to obtain confidential signatures. We first
introduce the related concept of confidential hash functions, akin to hiding hash functions [3]. We prove
that random oracles are confidential hash functions, as are perfectly one-way hash functions [7, 8] in a
weaker form.

We then show that the use of weakly confidential hash functions in full domain hash (FDH) signature
schemes yields weakly confidential signatures. We show that FDH signature schemes and Fiat-Shamir
signatures are confidential in the random oracle model. We also show that strongly secure confidential
signatures can be obtained in the standard model via the use of a randomness extractor [18, 19] (provided
the message entropy lies above some fixed bound).

Applications to Signcryption. Secure message transmission is usually performed via the encrypt-then-
sign paradigm, where the sender encrypts the message under the receiver’s public encryption key and
then signs the ciphertext with his own signing key. Signcryption schemes, introduced by [23], aim to
gain efficiency by combining the two operations. One consequence of previous security definitions [1,
2] is that the encrypt-and-sign approach, where one encrypts the message and signs the message in
parallel, does not provide a secure signcryption in general as the signature may reveal information about
the message.

We introduce security notions for (possibly deterministic) signcryption schemes with high-entropy
messages, along the lines of deterministic public-key encryption and confidential signatures. In case of
signcryption schemes, we can also give a low-entropy-message version and show that this definition is
strictly stronger than the definitions for high-entropy messages. We show that the parallelizable encrypt-
and-sign scheme is high-entropy confidential if the underlying encryption scheme is IND-CCA2 and
the signature scheme is confidential (and deterministic). We finally prove that we can derandomize any
signcryption scheme to derive a secure deterministic scheme.

Besides the fact that some of our results require the signcryption scheme to be deterministic, we
also believe that deterministic signcryption schemes may be intrinsically more secure than many current
schemes. The reason is that most of the current signcryption schemes are based on discrete-logarithm-
based digital signature schemes which are highly sensitive to imperfect randomness [17].

2 Confidential Signature Schemes

We formalise the notion of a confidential signature in three ways and give constructions. These confi-
dentiality notions can be applied to either probabilistic or deterministic signature schemes.

2.1 Definition of Confidential Signature Schemes

A digital signature scheme is a tuple of efficient algorithms SS = (SS.Setup, SS.Kg, SS.Sign, SS.Ver).
All algorithms (in this article) are probabilistic polynomial-time (PPT) in the security parameter k
(which we assume clear from the context). The parameter generation algorithm produces a set of param-
eters common to all users λss

R← SS.Setup(1k); subsequently the key generation algorithm produces a
public/private key pair (pk , sk) R← SS.Kg(λss). (Until Section 4.2 we will silently assume that λss al-
lows retrieval of k and both pk and sk allow retrieval of λss , simplifying notation.) The signing algorithm
takes a message m ∈ {0, 1}∗ and the private key, and outputs a signature σ R← SS.Sign(sk ,m). The ver-
ification algorithm takes as input a message, signature and public key, and outputs either a valid symbol
⊤ or an invalid symbol ⊥. This is written SS.Ver(pk ,m, σ). The standard notion for signature security
is that of unforgeability under chosen message attacks (see Appendix A.1 for formal definitions).

We present three confidentiality notions for a digital signature scheme — see Figure 1. These no-
tions are split depending on the adversary’s capabilities, which corresponds in a natural way to real-life
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ExptwSig−b
A (k):

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)

(m0, t0)
R← A1(λss)

(m1, t1)
R← A1(λss)

σ∗ ← SS.Sign(sk ,mb)

t′ R← ASS.Sign(sk,·)
2 (pk ,σ∗)

If t′ = t0 then output 1
Else return 0

ExptmSig−b
A (k):

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)

(m0, t0)
R← A1(pk)

(m1, t1)
R← A1(pk)

σ∗ ← SS.Sign(sk ,mb)

t′ R← ASS.Sign(sk,·)
2 (pk ,σ∗)

If t′ = t0 then output 1
Else return 0

ExptsSig−b
A (k):

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)

(m0, t0)
R← ASS.Sign(sk,·)

1 (pk)

(m1, t1)
R← ASS.Sign(sk,·)

1 (pk)
σ∗ ← SS.Sign(sk ,mb)

t′ R← ASS.Sign(sk,·)
2 (pk ,σ∗)

If t′ = t0 then output 1
Else return 0

Fig. 1. Notions of confidentiality for (a) weakly confidential signature schemes; (b) mezzo confidential signature schemes; (c)
strongly confidential signature schemes. The signing algorithm is applied to the message vector m component-wise.

scenarios where it may be possible to derive some information about a message from a signature which
might be deemed practically useless, e.g., the value of the hash of the message, but leakage of which
cannot be avoided.

In the weak confidentiality model, the attacker should not be able to determine any information
about the messages apart from that which can be obtained directly from the signature itself. Mezzo
confidentiality models the scenario where the attacker is able to retrieve public keys of the users, but
cannot interact directly with their communication network and obtain signatures of messages. In the
strong model, an active attacker should not be able to determine any information about the messages
apart from the signature itself.

For x ∈ {w,m, s}, the attacker A’s advantage in the xSig game is defined to be:

AdvxSigA (k) = |Pr[ExptxSig−0
A (k) = 1]− Pr[ExptxSig−1

A (k) = 1]| .

A signature scheme is weakly confidential (resp. mezzo confidential/strongly confidential) if all PPT
attackers A = (A1,A2) have negligible advantage AdvxSigA (k) in the wSig (resp. mSig /sSig) security
game, subject to the following restraints:

– Pattern preserving: there exist a length function ℓ(k) and equality functions ⋄ij ∈ {=, ̸=} (1 ≤ i, j ≤
ℓ(k)) such that for any admissible input a in the corresponding game and all possible (m, t) R←
A1(a) we have that |m| = ℓ(k) and mi ⋄ij mj .

– High entropy: the function π(k) = maxm∈{0,1}∗ Pr[mi = m : (m, t) R← A1(a)] is negligible,
where the probability is over A1’s random tape only (and i ∈ N and all choices of the other algo-
rithms are fixed). The value µ(k) = − log2 π(k) is termed the adversary’s min entropy.

For deterministic schemes we need the following additional constraint, ruling out trivial attacks:

– Signature free: A1 does not output a message mi ∈m where it has queried the signature oracle on
mi. (This security requirement only affects strongly confidential signature schemes.)

The latter condition prevents an attacker against a deterministic scheme from “winning” by setting t←
SS.Sign(sk ,m) — i.e., it prevents the attacker from “winning” the game simply by determining that the
message m has the property that its unique signature is SS.Sign(sk ,m).

The notions of confidentiality are strictly increasing in strength. If SS is a weakly confidential signa-
ture schemes, then Figure 2 depicts a scheme which is weakly confidential but not mezzo confidential.
Similarly, if SS is a mezzo confidential signature scheme, then Figure 3 shows a scheme which is mezzo
confidential but not strongly confidential. The appropriate proofs of security for these constructions are
given in Appendix B.

2.2 Relation to Other Notions of Confidentiality

In this section, we investigate the relationship between the notion of confidentiality that we have pro-
posed to other possible notions of confidentiality in a manner similar to Bellare et al. [4]. We define
simulator-based notions of security xSig ′ for x ∈ {w,m, s} and boolean/balanced versions of both the
computational and simulation-based security notions. We give relations between these notions which
show that these notions are equivalent.
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SS.Kg′(λss):
r R← {0, 1}k

(pk , sk) R← SS.Kg(λss)
Return (pk∥r, sk∥r)

SS.Sign′(sk∥r,m):
If m = m′∥r

Return SS.Sign(sk ,m)∥m
Else

Return SS.Sign(sk ,m)

SS.Ver′(pk∥r,m, σ):
If m = m′∥r

Parse σ as σ′∥m
σ ← σ′

Return SS.Ver(pk ,m, σ)

Fig. 2. A signature scheme which is weakly confidential but not mezzo confidential.

SS.Kg′(λss):
(pk , sk) R← SS.Kg(λss)

r R← {0, 1}k
σr ← SS.Sign(sk , 0∥r)
Return (pk , sk∥r∥σr)

SS.Sign′(sk∥r∥σr,m):
If m = m′∥r∥σr

Set σ′ ← SS.Sign(sk , 1∥m)
Return σ = (σ′,m)

Else
Set σ ← SS.Sign(sk , 2∥m)
Return σ = (σ′, r, σr)

SS.Ver′(pk ,m, σ):
If σ = (σ′,m′)

Parse m′ as m′ = m′′∥r′∥σ′
r

Return ⊤ iff
SS.Ver(pk , 1∥m′, σ′) = ⊤, and
m = m′, and
SS.Ver(pk , 0∥r′, σ′

r) = ⊤
If σ = (σ′, r′, σ′

r)
Return ⊤ iff

SS.Ver(pk , 2∥m,σ′) = ⊤, and
m ̸= m′′∥r′∥σ′

r for any m′′ ∈ {0, 1}∗,
and SS.Ver(pk , 0∥r′, σ′

r) = ⊤
Else return ⊥

Fig. 3. A signature scheme which is mezzo confidential but not strongly confidential.

We start by defining simulation-based security notions. These are given in Figure 4. We define an
attacker/simulator advantage to be

AdvxSig
′

A,S (k) = |Pr[ExptxSig
′−1

A,S (k) = 1]− Pr[ExptxSig
′−0

A,S (k) = 1]|

and a scheme is declared to be xSig ′ secure if for all PPT attackers A = (A1,A2) there exists a PPT
simulator S such that AdvxSig

′

A,S (k) is negligible (subject to the restriction that A is pattern preserving,
high entropy, and possibly signature free).

We define a scheme to be boolean xSig-secure (resp. boolean xSig ′-secure) if it is xSig-secure
(resp. xSig ′-secure) for PPT attackers A = (A1,A2) where A1(a) outputs (m, t) with |t| = 1. A
scheme is δ-balanced xSig-secure (resp. δ-balanced xSig ′-secure) if it is xSig-secure (resp. xSig ′-secure)
for PPT attackers A = (A1,A2) with A1(a) outputs (m, t) where |t| = 1 and

|Pr[t = b]− 1/2| ≤ δ for any b ∈ {0, 1} .

It is clear (by inspection) that a scheme which is xSig ′ secure is necessarily boolean xSig ′-secure and
that a scheme which is boolean xSig ′-secure is necessarily δ-balanced xSig ′-secure for any value of δ.

Proposition 1. We establish equivalence using the following results:

1. A scheme is δ-balanced xSig secure if it is δ-balanced xSig ′ secure for some negligible value δ(k)
where x ∈ {w,m, s}.

2. A scheme is δ-balanced xSig secure for any fixed value of δ if it is 0-balanced xSig secure where
x ∈ {w,m, s}.

3. A scheme is boolean xSig secure if it is δ-balanced xSig for some δ(k) ≥ 1/p(k) where x ∈
{w,m, s} and p(k) is some positive polynomial.

4. A scheme is xSig secure if it is boolean xSig where x ∈ {w,m, s}.
5. A scheme is xSig ′ secure if it is xSig secure where x ∈ {w,m, s}.

This proposition is proven in Appendix C.

3 Confidential Hash Functions and Signature Schemes

3.1 Confidential Hash Functions

We recap the notion of a hiding hash function by Bellare et al. [3], but call such functions confidential
here. For our purposes, a hash function H = (H.Kg, H) is a PPT pair of algorithms for key generation
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ExptwSig′−b
A,S (k):

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)

(m, t) R← A1(1
k)

σ∗ ← SS.Sign(sk ,m)
If b = 0 then

t′ R← ASS.Sign(sk,·)
2 (1k, pk ,σ∗)

Else
t′ R← SSS.Sign(sk,·)(1k, pk)

If t′ = t then output 1
Else return 0

ExptmSig′−b
A,S (k):

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)

(m, t) R← A1(1
k, pk)

σ∗ ← SS.Sign(sk ,m)
If b = 0 then

t′ R← ASS.Sign(sk,·)
2 (1k, pk ,σ∗)

Else
t′ R← SSS.Sign(sk,·)(1k, pk)

If t′ = t then output 1
Else return 0

ExptsSig
′−b

A,S (k):
λss

R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)

(m, t) R← ASS.Sign(sk,·)
1 (1k, pk)

σ∗ ← SS.Sign(sk ,m)
If b = 0 then

t′ R← ASS.Sign(sk,·)
2 (1k, pk ,σ∗)

Else
t′ R← SSS.Sign(sk,·)(1k, pk)

If t′ = t then output 1
Else return 0

Fig. 4. Simulation-based security notions for confidentiality for (a) weakly confidential signature schemes; (b) mezzo confi-
dential signature schemes; (c) strongly confidential signature schemes

ExptwHash-b
A (k):

H
R← H.Kg(1k)

(x0, t0)
R← A1(1

k)

(x1, t1)
R← A1(1

k)
h← H(xb)

t′ R← A2(H,h)
If t′ = t0 then output 1
Else return 0

Expt sHash-b
A (k):

H
R← H.Kg(1k)

(x0, t0)
R← A1(H)

(x1, t1)
R← A1(H)

h← H(xb)

t′ R← A2(H,h)
If t′ = t0 then output 1
Else return 0

Fig. 5. Notions of confidentiality for (a) weakly confidential hash functions; (b) strongly confidential hash functions. The hash
function is applied to the data vector x component-wise.

and hashing, respectively. We will identify the description output by the key generation algorithm H.Kg
with the hash function H itself. The collision-finding advantage AdvcolA of an attacker A against a hash
function H is defined as

AdvcolH,A(k) = Pr

[
H(x; r) = H(x′; r′)

and (x, r) ̸= (x′, r′)
: (x, x′, r, r′) R← A(H); H R← H.Kg(1k)

]
.

The hash function H is called collision-resistant if all PPT attackers A have negligible advantage
AdvcolH,A(k) (as a function of k). We require that the hash function is hiding/confidential against an
attacker A = (A1,A2) playing one of the games in Figure 5. For x ∈ {w, s} the attacker’s advantage is
defined to be

AdvxHash
H,A (k) = |Pr[ExptxHash-0

A (k) = 1]− Pr[ExptxHash-1
A (k) = 1]| .

A hash function is weakly (resp. strongly) confidential if every PPT attacker A has negligible advantage
in the corresponding game subject to the following restraints:

– Pattern preserving: there exist a length function ℓ(k) and equality functions ⋄ij ∈ {=, ̸=} (1 ≤
i, j ≤ ℓ(k)) such that for all possible (x, t) R← A1(1

k) we have that |x| = ℓ(k) and xi ⋄ij xj .
– High entropy: the function π(k) = maxx∈{0,1}∗ Pr[xi = x : (x, t) R← A1(a)] is negligible where

the probability is only over A1’s random tape. We define µ(k) = − log2 π(k) to be the adversary’s
minimum entropy.

Note that collision-resistant deterministic hash functions cannot achieve strong confidentiality because
an adversaryA1 can set t = H(x) for some message x andA2 can easily obtain this value from the hash
vector h. We also note that for “unkeyed” hash functions both notions are equivalent and so no unkeyed,
deterministic hash function can be considered confidential (unless the hash function is almost constant).

In the random oracle model, where the adversary is granted oracle access to the hash function H

instead of receiving the description as input, we give A1 access to the random oracle in the strong
case, but deny A1 access to H in the weak case. It is easy to see that a random oracle thus achieves
weak confidentiality, whereas the above attack on deterministic functions still applies in the strong case.
However, under the additional constraint thatA1 does not query H about any x in its output x (hash-free
adversaries) a random oracle is also strongly confidential:
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Proposition 2 (Confidentiality of Random Oracles). For any adversary A = (A1,A2) where A1

outputs vectors of length ℓ(k) and with min-entropy µ(k) = − log π(k), and where A2 makes at most
qh(k) queries to the random oracle, we have

Adv xHash
H,A (k) ≤ 2 · qh(k) · ℓ(k) · π(k)

for x ∈ {w, s} where A is assumed to be hash-free (in the strong case).

This proposition is proven in Appendix D.
As for constructions in the standard model, we note that perfectly one-way functions (POWs) [7, 8]

provide a partial solution. POWs have been designed to hide all information about preimages, akin to
our confidentiality notion. However, all known constructions of POWs are only good for fixed (sets of)
input distributions where the distributions can depend only on the security parameter but not the hash
function description. Furthermore, known POWs usually require the conditional entropy of any xi to be
high, given the other xj’s. In light of this, any ℓ(k)-valued perfectly one-way function [8] is a weakly
confidential hash function. Hence, we can build such hash functions based, for example, on claw-free
permutations [8] or one-way permutations [8, 14].

3.2 Full-Domain Hash Signatures

A full-domain hash (FDH) signature scheme FDH for deterministic hash function H is a signature
scheme in which the signing algorithm computes a signature as σ = f(H(m)) for some secret function
f , and the verification algorithm checks that g(σ) = H(m) for some public function g. More formally
(assuming that FDH.Setup(1k) outputs λss = 1k and that there exists a PPT algorithm which generates
the functions (f, g)← FDH.Kg′(λss)):

FDH.Kg(λss):
(f, g)← FDH.Kg′(λss)
H← H.Kg(1k)
(pk , sk) = ((g, H), (f, H))
Return (pk , sk)

FDH.Sign(sk ,m):
Parse sk as (f, H)
Return σ = f(H(m))

FDH.Ver(pk ,m, σ):
Parse pk as (g, H)
Return ⊤ if H(m) = g(σ)
Otherwise return ⊥

Unforgeability of FDH signatures in the ROM has been shown in [5, 9].

Proposition 3 (Weak Confidentiality of FDH). The FDH-signature scheme FDH for hash function
H is weakly confidential if H is weakly confidential. More precisely, for any adversary A = (A1,A2)
against the weak confidentiality of FDH, where A1 outputs ℓ(k) messages and A2 makes at most qs(k)
signature queries, there exists an adversary B = (B1,B2) against the weak confidentiality of the hash
function such that

AdvwSigFDH,A(k) ≤ AdvwHash
H,B (k),

where B1’s running time is identical to the one of A1, and B2’s running time is the one of A2 plus
TimeFDH.Kg(k) + (qs + ℓ(k)) · TimeFDH.Sign(k) +O(k).

The proof actually shows that the signature scheme remains confidential for an adversarially chosen
key pair (f, g), i.e., confidentiality only relies on the confidentiality of the hash function. Moreover, by
Proposition 2, we have that FDH-signature schemes are weakly confidential in the random oracle model.

Proof. Assume that FDH is not weakly confidential and that there exists an adversary A = (A1,A2)
successfully breaking this property. Then we construct an adversary B = (B1,B2) against the weak
confidentiality of the hash function as follows. Adversary B1 on input 1k runs A1 on input 1k and
outputs this algorithm’s answer (m, t).

Algorithm B2 receives as input a description H of the confidential hash function and a vector h of
hash values. B2 runs (f, g)← FDH.Kg′(1k), sets pk ← (g, H) and sk ← (f, H), and computes signatures
σ∗ = f(h). It invokes A2 on (1k, pk ,σ∗) and answers each subsequent signature request for message
m by computing σ = FDH.Sign(sk ,m). When A2 outputs t′ algorithm B2 copies this output and stops.

It is easy to see that B’s advantage attacking the confidentiality of the hash function is identical to
A’s advantage attacking the confidentiality of the FDH signature scheme (the fact that A1 preserves
pattern and produces high-entropy messages carries over to B1). ⊓⊔
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Suppose SS = (SS.Setup, SS.Kg, SS.Sign, SS.Ver) is a signature scheme. We define a new signature scheme SS′ as follows
(where SS.Setup′ ≡ SS.Setup):

SS.Kg′(λss):
(pk , sk)← SS.Kg(λss)

H
R← H.Kg(1k)

pk ′ ← (pk , H); sk ′ ← (sk , H)
Return (pk ′, sk ′)

SS.Sign′(sk ′,m):
Parse sk ′ as (sk , H)
r R← {0, 1}k
h← H(r,m)
σ′ ← SS.Sign(sk , h)
σ ← (σ′, r)
Return σ

SS.Ver′(pk ′,m, σ):
Parse pk ′ as (pk , H)
Parse σ as (σ′, r)
Return SS.Ver(pk , H(r,m), σ′)

Fig. 6. Construction of a strongly confidential signature scheme in the ROM.

No (unforgeable) FDH-signature scheme is mezzo confidential, because a signature on the message m
leaks the value H(m). More formally, an attackerA1 can pick a message m R← {0, 1}k and set t← H(m).
Adversary A2 then receives σ ← f(H(m)) and can recover t = H(m) by computing g(σ).

3.3 Strongly Confidential Signatures in the ROM

Recall from the previous section that FDH signatures leak the hash value of a message. To prevent this,
we make the hashing process probabilistic and compute (r, H(r,m)) for randomness r. Then A1 cannot
predict the hash values of the challenge messages due to r (which becomes public only afterwards) and
A2 cannot guess the hash values due to the entropy in the message m (even though r is then known).
Our instantiation is shown in Figure 6.

Proposition 4 (Random Oracle Instantiation). If H is a hash function modeled as a random oracle,
then the signature scheme SS′ is strongly confidential. That is, for any attacker A = (A1,A2) against
the strong confidentiality of the signature scheme SS′, where A1 outputs a vector of length ℓ(k) and
with min-entropy µ(k) = − log π(k), and whereA2 asks at most qh oracle queries (signing queries and
direct hash oracle queries), we have

Adv sSig
SS′,A(k) ≤ 2 · qh(k) · ℓ(k) · (2−k + π(k)) .

The proof is given in Appendix D.2. Clearly, the scheme is also (strongly) unforgeable if the under-
lying signature scheme is (strongly) unforgeable.

3.4 Fiat-Shamir Signature Schemes

Our second instantiation is based upon the Fiat-Shamir paradigm [13] that turns every (three-round)
identification scheme into a signature scheme. An identification scheme (ID scheme) is defined by a
triplet (G,S,R), where G is a key generation algorithm and the sender S wishes to prove his identity
to the receiver R. More formally: G(1k) is an efficient algorithm that outputs a key pair (ipk, isk).
(S(isk), R(ipk)) are interactive algorithms and it is required that Pr[ (S(isk), R(ipk)) = 1] = 1 (where
the probability is taken over the coin tosses of S,R and G). A canonical ID scheme is a 3-round ID
scheme (α;β; γ) in which α is sent by the sender S, β by the receiver R and consists of R’s random
coins, and γ is sent by the sender. For a sender S with randomness r, we denote α = S(isk; r) and
γ = S(isk, α, β; r). The Fiat-Shamir signature scheme is given in Figure 7.

In order to prove the confidentiality of this scheme, we need to assume that the commitment α
of the Fiat-Shamir scheme has non-trivial entropy. This can always be achieved by appending public
randomness.

Proposition 5 (Fiat-Shamir Instantiation). If H is a hash function modeled as a random oracle, then
the Fiat-Shamir instantiation SS′′ for non-trivial commitments is strongly confidential. More precisely,
for any attacker A = (A1,A2) against the strong confidentiality of the signature scheme SS′′ where
A1 outputs a message vector of length ℓ(k) with min-entropy µ(k) = − log π(k), α has min-entropy
µ′(k) = − log π′(k), and A2 asks at most qh oracle queries (signing queries and direct hash oracle
queries), we have

Adv sSig
SS′′,A(k) ≤ 2 · qh(k) · ℓ(k) · (π(k) + π′(k)).



8 Alexander W. Dent, Marc Fischlin, Mark Manulis, Dominique Schröder, and Martijn Stam

Suppose (G,S,R) is a canonical identification scheme and H is a hash function family. We define the signature scheme
SS′′ = (SS.Setup′′, SS.Kg′′, SS.Sign′′, SS.Ver′′) as follows (where SS.Setup(1λ) returns λss = 1λ):

SS.Kg′′(λss):
(ipk, isk)← G(λss)

H
R← H.Kg(1k)

pk ′ ← (ipk, H); sk ′ ← (isk, H)
Return (pk ′, sk ′)

SS.Sign′′(sk ′,m):
Parse sk ′ as (isk, H)
r R← {0, 1}k
α← S(isk; r)
β ← H(α,m)
γ ← S(isk, α, β; r)
σ ← (α, β, γ)
Return σ

SS.Ver′′(pk ′,m, σ):
Parse pk ′ as (ipk, H)
Parse σ as (α, β, γ)
β′ ← H(α,m)
Return 1 iff β = β′

and R(ipk, α, β, γ) = 1

Fig. 7. The Fiat-Shamir paradigm that turns every ID scheme into a signature scheme.

Suppose SS = (SS.Setup, SS.Kg, SS.Sign, SS.Ver) is a signature scheme. We define a new signature scheme SS′′′ as follows
(where SS.Setup′′′ ≡ SS.Setup):

SS.Kg′′′(λss):
(pk , sk)← SS.Kg(λss)
Choose an extractor Ext
pk ′ ← (pk ,Ext)
sk ′ ← (sk ,Ext)
Return (pk ′, sk ′)

SS.Sign′′′(sk ′,m):
Parse sk ′ as (sk ,Ext)
r R← {0, 1}b
h← Ext(m, r)
σ′ ← SS.Sign(sk , h)
σ ← (σ′, r)
Return σ

SS.Ver′′′(pk ′,m, σ):
Parse pk ′ as (pk ,Ext)
Parse σ as (r, σ′)
Set h← Ext(m, r)
Return SS.Ver(pk , h, σ′)

Fig. 8. Construction of strongly confidential signature scheme based on randomness extractors.

3.5 Strongly Confidential Signatures from Randomness Extraction

Our instantiation in the standard model relies on randomness extractors [18, 19] and is depicted in Fig-
ure 8. The main idea is to smooth the distribution of the message via an extractor, and to sign the almost
uniform value h.

Recall that a strong (a, b, n, t, ϵ)-extractor is an efficient algorithm Ext : {0, 1}a×{0, 1}b → {0, 1}n
which takes some random input m ∈ {0, 1}a (sampled according to some distribution with min-entropy
at least t) and some randomness r ∈ {0, 1}b. It outputs h← Ext(m, r) such that the statistical distance
between (r, h) and (r, u) is at most ϵ for uniform random values r ∈ {0, 1}b and u ∈ {0, 1}n.

To ensure unforgeability we need to augment the extractor’s extraction property by collision-resistance,
imposing the requirement that the extractors be keyed and introducing dependency of the extractor’s pa-
rameters a, b, n, t, ϵ on the security parameter k. For a survey about very efficient constructions of such
collision-resistant extractors see [10].

In order to use extractors, we need a stronger assumption on the message distribution: we assume that
the adversaryA1 now outputs vectors of messages such that each message in the vector has min-entropy
greater than some fixed bound µ(k) given the other messages. Observe that the collision-resistance
requirement on the extractor implies that µ must be super-logarithmic. We say that the output has con-
ditional min-entropy µ(k).

Proposition 6 (Extractor Instantiation). If Ext is an (a, b, n, t, ϵ)-extractor then the extractor instan-
tiation of SS′′′ is strongly confidential. More specifically, for any attacker A = (A1,A2) against the
strong confidentiality of the signature scheme SS′′′, where A1 outputs a vector of length ℓ(k) with con-
ditional min-entropy µ(k) ≥ t(k), we have

Adv sSig
SS′′′,A(k) ≤ 2 · ℓ(k) · ϵ(k).

Note that our construction of the randomness extractor operates on messages of a fixed length of
a(k) input bits, and the signature length depends on this value a(k). To process larger messages we can
first hash input messages with a collision-resistant hash function, before passing it to the extractor. In
this case, some care must be taken to determine a correct bound for the entropy lost through the hash
function computation.
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4 Deterministic Signcryption

Signcryption is a public-key primitive which aims to simultaneously provide message confidentiality
and message integrity. Signcryption was introduced by Zheng [23] and security models were indepen-
dently introduced by An, Dodis and Rabin [1] and by Baek, Steinfeld and Zheng [2]. Similar to public-
key encryption, achieving confidentiality in the formal security models requires that signcryption is a
randomised process; however, we may also consider the confidentiality of deterministic signcryption
schemes on high-entropy message spaces. We will also see that a practical version of confidentiality
may even be achieved by a deterministic signcryption scheme for low entropy message distributions.

4.1 Notions of Confidentiality for Signcryption Schemes

A signcryption scheme is a tuple of PPT algorithms SC = (SC.Setup, SC.Kgs, SC.Kgr, SC.SignCrypt,
SC.UnSignCrypt). The setup algorithm generates public parameters λsc

R← SC.Setup(1k) common
to all algorithms. We will generally assume that all algorithms take λsc as an implicit input, even
if it is not explicitly stated. The sender key-generation algorithm generates a key pair for the sender
(pkS , skS)

R← SC.Kgs(λsc) and the receiver key-generation algorithm generates a key pair for a re-
ceiver (pkR, skR)

R← SC.Kgr(λsc). The signcryption algorithm takes as input a message m ∈ M,
the sender’s private key skS , and the receiver’s public key pkR, and outputs a signcryption cipher-
text C R← SC.SignCrypt(skS , pkR,m). The unsigncryption algorithm takes as input a ciphertext
C ∈ C, the sender’s public key pkS , and the receiver’s private key skR, and outputs either a message
m R← SC.UnSignCrypt(pkS , skR, C) or an error symbol ⊥.

It is interesting to consider the basic attack on a deterministic signcryption scheme. In such an
attack, the attacker picks two messages (m0,m1) and receives a signcryption C∗ of the message mb.
The attacker checks whether C∗ is the signcryption of m0 by requesting the signcryption of m0 from
the signcryption oracle. As in the case of public-key encryption, we may prevent this basic attack by
using a high-entropy message space and so prevent the attacker being able to determine which message
to query to the signcryption oracle. However, unlike the case of public-key encryption, we may also
prevent this attacker by forbidding the attacker to query the signcryption oracle on m0 and m1. We can
therefore differentiate between the high-entropy case (in which the message distribution chosen by the
attacker has high entropy) and the low-entropy case (in which the attacker is forbidden from querying
the signcryption oracle on a challenge message).

We give definitions for the high-entropy and low-entropy confidentiality in Figure 9. In both cases,
i.e. for x ∈ {h, l}, the attacker’s advantage is defined as

AdvxSCR
SS,A (k) = |Pr[ExptxSCR−1

A = 1]− Pr[ExptxSCR−0
A = 1]| .

A signcryption scheme is high-entropy confidential if every PPT attacker A has negligible advantage in
the hSCR game subject to the following restrictions:

– Strongly pattern preserving: there exists a length function ℓ(k), message length functions qi(k),
and equality functions ⋄ij ∈ {=, ̸=} (1 ≤ i, j ≤ ℓ(k)) such that for all possible (m, t) R←
A1(λsc , pk

∗
S , pk

∗
R) we have that |m| = ℓ(k), |mi| = qi(k) and mi ⋄ij mj .

– High entropy: the function π(k) = maxm∈{0,1}∗ Pr[mi = m : (m, t) R← A1(a)] is negligible
where the probability is only over A1’s random tape. The value µ(k) = − log π(k) is known as the
adversary’s minimum entropy.

– Signature free: A1 does not output a message mi ∈m where it has queried the signcryption oracle
on the pair (pk∗R,mi).

– Non-trivial: A2 does not query the unsigncryption oracle on any pair (pk∗S , C) where C ∈ C∗.

A signcryption scheme is low-entropy confidential if every PPT attacker A has negligible advantage in
the lSCR game subject to the restrictions thatA never queries the encryption oracle on either (pk∗R,m0)
or (pk∗R,m1), and A2 never queries the decryption oracle on (pk∗S , C

∗).
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ExpthSCR−b
A (k):

λsc
R← SC.Setup(1k)

(pk∗
S , sk

∗
S)

R← SC.Kgs(λsc)

(pk∗
R, sk

∗
R)

R← SC.Kgr(λsc)

(m0, t0)
R← AO

1 (λsc , pk
∗
S , pk

∗
R)

(m1, t1)
R← AO

1 (λsc , pk
∗
S , pk

∗
R)

C∗ ← SC.SignCrypt(λsc , sk
∗
S , pk

∗
R,mb)

t′ R← AO
2 (λsc , pk

∗
S , pk

∗
R,C

∗)
If t′ = t0 then output 1
Else return 0

Expt lSCR−b
A (k):

λsc
R← SC.Setup(1k)

(pk∗
S , sk

∗
S)

R← SC.Kgs(λsc)

(pk∗
R, sk

∗
R)

R← SC.Kgr(λsc)

(m0,m1, ω)
R← AO

1 (λsc , pk
∗
S , pk

∗
R)

C∗ ← SC.SignCrypt(λsc , sk
∗
S , pk

∗
R,mb)

b′ R← AO
2 (C∗, ω)

Output b′

Fig. 9. Notions of confidentiality for (a) high-entropy signcryption schemes and (b) low-entropy signcryption schemes. Note
that A1 may pass the state information ω to A2 in the lSCR game. The attackers have access to a signcryption oracle
SC.SignCrypt(sk∗

S , ·, ·) and an unsigncryption oracle SC.UnSignCrypt(·, sk∗
R, ·).

Proposition 7. Any deterministic signcryption scheme SC which is low-entropy confidential is also
high-entropy confidential. In particular, for any adversary A against high-entropy confidentiality, mak-
ing at most qs(k) signcryption queries and where A1 outputs ℓ(k) messages with min-entropy µ(k) =
− log π(k), there exists an adversary Ā such that

AdvhSCR
SC,A (k) ≤ ℓ(k) ·Adv lSCR

SC,Ā(k) + 4 · qs(k) · ℓ(k) · π(k),

where the running time of Ā equals the time of A plus O(k).

The proof essentially shows that, since the challenge messages produced by a high-entropy attacker
A1 have min-entropy µ(k), the probability that A2 queries the signcryption oracle on one of those
messages is bounded by 4 · qs(k) · ℓ(k) · π(k). If this does not occur, then a low-entropy attacker can
easily run a high-entropy attacker as a black-box subroutine. The proof holds for deterministic schemes
only.

The analogue of Proposition 7 does not hold for probabilistic schemes. Suppose SC is a signcryp-
tion scheme which is low-entropy confidential. The construction SC′ given in Figure 10 is low-entropy
confidential, but not high-entropy confidential. The definition uses a pseudo-random function (PRF) and
a signature scheme. Security definitions for these schemes are given in Appendix A.

SC.Setup′(1k):
λsc

R← SC.Setup(1k)

λss
R← SS.Setup(1k)

Return λ′
sc ← (λsc , λss)

SC.Kgs
′(λsc):

(pkS , skS)
R← SC.Kgs(λsc)

κ R← PRF.Kg(1k)

(pk , sk) R← SS.Kg(λss)
pk ′

S ← (pkS , pk); sk
′
S ← (skS , κ, sk)

Return (pk ′
S , sk

′
S)

SC.Kgr
′(λsc):

Return (pkR, skR)← SC.Kgr(λsc)

SC.SignCrypt′(sk ′
S , pkR,m):

Parse sk ′
S as (skS , κ, sk)

c R← SC.SignCrypt(skS , pkR,m)
r ← PRF(κ, (pk ′

S , pkR,m))
a0 ← r; a1 ← m⊕ r

β R← {0, 1}
σ ← SS.Sign(sk , (pkS , pkR, c, aβ))
Return C ← (c, aβ , σ)

SC.UnSignCrypt′(pk ′
S , skR, C):

Parse pk ′
S as (pkS , pk)

Parse C as (c, a, σ)
If SS.Ver(pk , (pkS , pkR, c, a)) =⊥ then return ⊥
Return SC.UnSignCrypt(pkS , skR, C)

Fig. 10. A Probabilistic Signcryption Scheme which is Low-Entropy Confidential but not High-Entropy Confidential

The scheme essentially attaches one share from a one-out-of-two secret-sharing scheme to each
ciphertext. The resulting pair is signed to preserve unforgeability (and to prevent malleability). This
scheme is clearly not high-entropy confidential, as multiple queries to the signcryption oracle will even-
tually reveal both shares and therefore the message. However, the scheme remains low-entropy confi-
dential as the attacker can only see (at most) one ciphertext corresponding to either of the challenge
messages; thus, the secret-sharing scheme hides all information about the underlying message.
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For deterministic signcryption, we also have that the low-entropy confidentiality definition is strictly
stronger than the high-entropy confidentiality definition. If SC is a high-entropy confidential signcryp-
tion scheme, then the signcryption scheme SC′ given in Figure 11 is high-entropy confidential signcryp-
tion scheme but not a low-entropy confidential signcryption scheme.

SC.SignCrypt′(skS , pkR,m):
C ← SC.SignCrypt(skS , pkR,m)

If m = 0k

Return C∥0
Else

Return C∥1

SC.UnSignCrypt′(pkS , skR, C):
Parse C as C′∥c for c ∈ {0, 1}
m← SC.UnSignCrypt(pkS , skR, C

′)

If c = 0 and m ̸= 0k

Return ⊥
If c = 1 and m = 0k

Return ⊥
Else

Return m

Fig. 11. A signcryption scheme which is high-entropy secure but not low-entropy secure

4.2 The Encrypt-and-Sign Signcryption Scheme

Initially, it may be thought that high-entropy confidentiality may be easily achieved through the combi-
nation of deterministic encryption and confidential signatures. However, many of the classic composition
theorems, such as encrypt-then-sign, fail to achieve high-entropy security even when instantiated with
secure components. Consider the encrypt-then-sign scheme, in which a signcryption is formed by first
encrypting a message m with a deterministic public-key encryption scheme to give a ciphertext C, and
then signing the ciphertext to obtain a signature σ. This scheme fails to achieve high-entropy confiden-
tiality as A1 knows the public-key of the encryption scheme and may compute t ← C. A2 may output
t′ ← C by inspecting the signcryption ciphertext and so “win” the security game.

However, we can show that the encrypt-and-sign (which is typically insecure as a signcryption
scheme) is secure when instantiated with an IND-CCA2 public-key encryption scheme and a strongly
confidential signature scheme4. The construction is given in Figure 12. The scheme can easily be shown
to be unforgeable (in the sense that an attacker cannot obtain a signcryption of any message which was
not previously sent by that sender to that receiver).

Theorem 8. If the signature scheme is deterministic, strongly unforgeable, and strongly confidential,
and the encryption scheme is IND-CCA2 secure, then the signcryption scheme is confidential in the
high-entropy model. In particular, if there exists an attacker A against the high-entropy security of the
signcryption scheme (asking ℓ(k) challenge messages and making at most qsc(k) signcryption queries),
then there exist attackersApke ,Ass , andAsunf against the IND-CCA2 security of the encryption scheme,
against the strong confidentiality of the signature scheme, and against the strong unforgeability of the
signature scheme, such that

AdvhSCR
E+S,A(k) ≤ ℓ(k) · Advcca2PKE,Apke

(k) + AdvsSigSS,Ass
(k) + Advseuf−cma

SS,Asunf
(k) .

where the running times ofApke ,Ass , andAsunf equal the one ofA plus (qsc(k)+ℓ(k))·(TimeSC.SignCrypt(k)+
TimeSC.UnSignCrypt(k)) +O(k).

The security of this scheme can be proven in a manner similar to the encryption/signature composi-
tion theorems proven by An et al. [1]. The scheme is proven secure in Appendix E.

4.3 Derandomization

Goldreich [16] presents a technique to turn any probabilistic signature scheme into a deterministic one.
The idea is to include the secret key κ of a pseudorandom function (PRF.Kg, PRF) in the secret signing

4 Strongly confidential, probabilistic signature schemes are given in Sections 3.3 and 3.4. These can be transformed in a
strongly confidential, deterministic signature schemes using the derandomization techniques discussed in the next section.
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SC.Setup(1k)

λss ← SS.Setup(1k)

λpke ← PKE.Setup(1k)
λsc ← (λss , λpke)
Return (λsc)

SC.Kgr(λsc)
Parse λsc as (λss , λpke)
(pkR, skR)← PKE.Kg(λpke)
Return (pkR, skR)

SC.Kgs(λsc)
Parse λsc as (λss , λpke)
(pkS , skS)← SS.Kg(λss)
Return (pkS , skS)

SC.SignCrypt(λsc , pkR, skS ,m)
Parse λsc as (λss , λpke)
c← PKE.Enc(λpke , pkR, (pkS ||m))
σ ← SS.Sign(λss , skS , (pkR||m))
Return C = (c, σ)

SC.UnSignCrypt(λsc , skR, pkS , C)
Parse λsc as (λss , λpke)
Parse C as (c, σ)
(pk ′

S ||m′)← PKE.Dec(λpke , skR, c)
If pk ′

S ̸= pkS , reject
Extract pkR from skR

If SS.Ver(λss , pkS , (pkR||m′), σ) = ⊥, reject
Return m′

Fig. 12. The Encrypt-and-Sign signcryption scheme.

key and, when signing a message m, use the random coins r = PRF(κ;m) in this process. Note that the
resulting scheme now yields the same signature if run twice on the same message. A formal definition
of a PRF can be found in Appendix A.

We show that Goldreich’s idea applies to signcryption schemes as well, taking advantage of the
fact that a signcryption scheme involves a secret signing key in which we can put the key κ of the
pseudorandom function. Nonetheless, whereas a probabilistic signcryption scheme usually hides the fact
that the same message has been encrypted twice, a derandomized version clearly leaks this information.

For a signcryption scheme SC the derandomized version SCPRF based on a pseudorandom function
PRF works according to Goldreich’s strategy:

SC.SetupPRF(1k):
Return λsc ← SC.Setup(1k)

SC.Kgs
PRF(λsc):

(skS , pkS)← SC.Kgs(λsc)
κ← PRF.Kg(1k)

skPRFS ← (skS , κ); pkPRFS ← pkS
Return (skPRFS , pkPRFS )

SC.Kgr
PRF(λsc):

Return (skR, pkR)← SC.Kgr

SC.SignCryptPRF(skPRFS , pkR,m):
Parse skPRFS as (skS , κ)
r ← PRF(κ, (pkR,m))
C ← SC.SignCrypt(skS , pkR,m; r)

(i.e. using randomness r)
Return C

SC.UnSignCryptPRF(skR, pk
PRF
S , C):

Return SC.UnSignCrypt(skR, pkS , C)

Proposition 9 (Derandomized Signcryption). Let SC be an unforgeable and high-entropy (resp. low-
entropy) confidential signcryption scheme. Then the scheme SCPRF is a deterministic, unforgeable sign-
cryption scheme which is high-entropy (resp. low-entropy) confidential. That is, for x ∈ {l, h} and any
adversary A = (A1,A2) against xSCR confidentiality, there exist adversaries D and B = (B1,B2)
such that

AdvxSCR
SCPRF,A(k) ≤ 2 ·AdvPRFD (k) + AdvxSCR

SC,B (k) + 2qsc(k) · ℓ(k) · π(k)

whereD’s running time is identical to the time ofA, plus TimeSC.Setup(k)+TimeSC.Kgs(k)+TimeSC.Kgr(k)+
(qsc+ℓ(k)) ·TimeSC.SignCrypt(k)+O(k); the running time of B equals the time ofA plus O(qsc · log qsc).

Note that we could use the implication from low-entropy confidentiality to high-entropy confiden-
tiality (Proposition 7) but give a direct proof to obtain better bounds. The scheme can easily be shown
to be unforgeable.
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A Standard Security Notions

A.1 Signature Schemes

The standard notion for signature security is that of (strong) existential unforgeability under chosen
message attacks (sEUF-CMA). The strong version is defined below. Freshness of (m,σ) indicates that
σ was never received by A as response to a signing request on m.

Advseuf−cma
SS,A (k) = Pr

SS.Ver(pk ,m, σ) = ⊤
(m,σ) is fresh

:

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)

(m,σ) R← ASS.Sign(sk ,·)(pk)

 .

The advantage Adveuf−cma
SS,A (k) of the slightly weaker notion (EUF-CMA) is defined analogously, but

this time only m needs to be fresh.

A.2 Public-Key Encryption

A public key encryption scheme is a tuple of algorithms PKE = (PKE.Setup, PKE.Kg, PKE.Enc, PKE.Dec).
First the common parameters for the given security level k ∈ N are generated by λpke

R← PKE.Setup(1k)

after which a user’s public/private keys are generated using (pk , sk) R← PKE.Kg(λpke). Given such a
key pair, a message m ∈ {0, 1}∗ is encrypted by c R← PKE.Enc(pk ,m); a ciphertext is decrypted by
m R← PKE.Dec(sk , c). For consistency, we require that for all messages m ∈ {0, 1}∗, we have that
PKE.Dec(sk , PKE.Enc(pk ,m)) = m.

We require a PKE is secure against IND-CCA2 attacks [20, 12], for which the advantage of an ad-
versary A = (A1,A2) is defined as

Advcca2PKE,A(k) =
∣∣Pr[Exptcca2−0

A = 1
]
− Pr

[
Exptcca−1

A = 1
]∣∣ ,

where (for b ∈ {0, 1}):

Exptcca2−b
A

λpke
R← PKE.Setup(1k)

(pk , sk) R← PKE.Kg(λpke)

(m0,m1, ω)
R← APKE.Dec(sk ,·)

1 (pk)

c∗ R← PKE.Enc(pk ,mb)

b′ R← APKE.Dec(sk ,·)
2 (c∗, ω)

Output 1 if b′ = b

The adversary A2 may not query PKE.Dec(sk , ·) with c∗. A PKE scheme PKE is IND-CCA2 secure
if the advantage function Advcca2PKE,A(k) is a negligible function for all probabilistic polynomial-time
adversaries A = (A1,A2).

A.3 Pseudo-Random Functions

A pseudo-random function is a pair of algorithms PRF = (PRF.Kg, PRF). The key generation algorithm
outputs a key κ R← PRF.Kg(1k). For our purposes, a pseudo-random function PRF(κ, ·) takes arbitrary
bitstrings as inputs and outputs a bitstring in a given space R. Let F be the set of all functions from
f : {0, 1}∗ → R. The security of a PRF against a PPT attacker A is defined by the following two
games:
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ExptPRF−0
A (k):

κ R← PRF.Kg(1k)

Return APRF(κ,·)(1k)

ExptPRF−1
A (k):

f R← F
Return Af(·)(1k)

The attacker’s advantage is defined to be:

AdvPRFPRF,A(k) = |Pr[ExptPRF−0
A (k) = 1]− Pr[ExptPRF−1

A (k) = 1]| .

B Relations Between Notions of Confidentiality for Signature Schemes

In this section, we prove the separation between weakly, mezzo, and strongly confidential security.
Observe that our separation results are tailored to preserve the unforgeability properties of the starting
scheme as well.

Proposition 10 (weak ̸⇒ mezzo). Let SS be a signature scheme. Then there exists a signature scheme
SS′ such that for any adversary A′ against weak confidentiality of SS′ there exists an adversary A
against weak confidentiality of SS such that

AdvwSigA′,SS′
(k) ≤ AdvwSigA,SS(k) + 2 · ℓ(k) · 2−k,

where the running time of A equals the one of A′ plus O(k). Furthermore, there exists an adversary B′
such that

AdvmSig
B′,SS′

(k) = 1− 2−k

where B′ runs in time O(k).

Proof. Take any weakly confidential signature scheme SS = (SS.Setup, SS.Kg, SS.Sign, SS.Ver) and
modify it to a signature scheme SS′ as follows (where SS.Setup′ ≡ SS.Setup; duplicated from Fig-
ure 2):

SS.Kg′(λss):
r R← {0, 1}k
(pk , sk) R← SS.Kg(λss)
Return (pk∥r, sk∥r)

SS.Sign′(sk∥r,m):
If m = m′∥r

Return SS.Sign(sk ,m)∥m
Else

Return SS.Sign(sk ,m)

SS.Ver′(pk∥r,m, σ):
If m = m′∥r

Parse σ as σ′∥m
σ ← σ′

Return SS.Ver(pk ,m, σ)

It follows easily that the modified scheme SS′ remains unforgeable and weakly confidential. The latter
can be seen by noting that unless the outputs of the first stage adversary contain a message of the form
m = m′∥r, which happens with probability at most 2 · ℓ(k) · 2−k, any break of weak confidentiality of
the derived scheme immediately yields a break of the original scheme. That is, given adversary A′ we
let A1 execute A′

1 to get (m, t), and A2 given pk and the signatures simply appends a random string
r to pk and invokes A′

2. As long as no message in m contains r the simulation is perfect and succeeds
whenever m does not contain r.

The modified scheme SS′ is clearly not mezzo confidential. We can build an adversary B = (B1,B2)
which works as follows. Algorithm B1 gets as input the public key pk∥r, chooses a message m R←
{0, 1}k at random, and sets m ← m∥r and t ← m. The input of the second algorithm B2 is a public
key pk and a signature σ∗. It parses σ∗ as σ′∥m and outputs m. It follows easily from the construction
that the adversary B breaks mezzo confidentiality, in particular the advantage of B is

AdvmSig
B,SS′(k) = |Pr[Expt

mSig−0
B,SS′ (k) = 1]− Pr[ExptmSig−1

B,SS′ (k) = 1]| = 1− 2−k .

⊓⊔
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Proposition 11 (mezzo ̸⇒ strong). Let SS be a signature scheme. Then there exists a signature scheme
SS′ such that for any adversary A′ against mezzo confidentiality of SS′ there exists an adversary A
against mezzo confidentiality of SS such that

AdvmSig
A′,SS′

(k) ≤ AdvmSig
A,SS(k) + 2 · ℓ(k) · 2−k,

where the running time of A equals the one of A′ plus O(k). Furthermore, there exist a signature-free
adversary B such that

Adv sSigB,SS′(k) = 1− 2−k

where B runs in time O(k) and makes a single query to its signing oracle.

Proof. Take a mezzo confidential signature SS = (SS.Setup, SS.Kg, SS.Sign, SS.Ver). We modify it to
get a new scheme SS′ as follows (where SS.Setup′ ≡ SS.Setup, duplicated from Figure 3):

SS.Kg′(λss):
(pk , sk) R← SS.Kg(λss)

r R← {0, 1}k
σr ← SS.Sign(sk , 0∥r)
Return (pk , sk∥r∥σr)

SS.Sign′(sk∥r∥σr,m):
If m = m′∥r∥σr

Set σ′ ← SS.Sign(sk , 1∥m)
Return σ = (σ′,m)

Else
Set σ ← SS.Sign(sk , 2∥m)
Return σ = (σ′, r, σr)

SS.Ver′(pk ,m, σ):
If σ = (σ′,m′)

Parse m′ as m′ = m′′∥r′∥σ′
r

Return ⊤ iff
SS.Ver(pk , 1∥m′, σ′) = ⊤, and
m = m′, and
SS.Ver(pk , 0∥r′, σ′

r) = ⊤
If σ = (σ′, r′, σ′

r)
Return ⊤ iff

SS.Ver(pk , 2∥m,σ′) = ⊤, and
m ̸= m′′∥r′∥σ′

r for any m′′ ∈ {0, 1}∗,
and SS.Ver(pk , 0∥r′, σ′

r) = ⊤
Else return ⊥

We have to show that the scheme is unforgeable and mezzo-confidential. Suppose there exists an
sEUF-CMA attacker A′ against SS′. We build an sEUF-CMA attacker B against SS:

1. B receives a key-pair (pk , sk) for the signature scheme SS.
2. B chooses r R← {0, 1}k and queries the signature oracle on 0∥r to receive a signature σr.
3. B runs A′(pk). If A′ queries the signature oracle on the message m then B responds as follows:

– If m = m′∥r∥σr then B queries the signature oracle on 1∥m, receives the signature σ′, and
returns the signature (σ′,m).

– If m ̸= m′∥r∥σr then B queries the signature oracle on 2∥m, receives the signature σ′, and
returns the signature (σ′, r, σr).

B terminates with the output of a message m and a signature σ.
4. If σ = (σ′,m′), thenB parses m′ as m′′∥r′∥σ′

r. If m = m′, (r′, σ′
r) ̸= (r, σr), and SS.Ver(pk , 0∥r′, σ′

r) =
⊤ then B returns the message 0∥r′ and the signature σ′

r.
5. If σ = (σ′,m′), then B parses m′ as m′′∥r′∥σ′

r. If m = m′, and (r′, σ′
r) = (r, σr) then B returns the

message 1∥m and the signature σ′.
6. If σ = (σ′, r′, σ′

r), SS.Ver(pk , 2∥m,σ′) = ⊤, and (r′, σ′
r) ̸= (r, σr), then B returns the message

0∥r′ and the signature σ′
r.

7. If σ = (σ′, r′, σ′
r), SS.Ver(pk , 2∥m,σ′) = ⊤, and (r′, σ′

r) = (r, σr), then B returns the message
2∥m and the signature σ′.

8. Else B returns ⊥.

Suppose A′ outputs a message m and a valid forgery σ. We can split the signature into four cases:

– Case 1: If σ = (σ′,m′) then m = m′ and m parses as m′′∥r′∥σ′
r where SS.Ver(pk , 0∥r′, σ′

r) = ⊤.
If (r′, σ′

r) ̸= (r, σr) then (0∥r′, σ′
r) is a valid forgery as the only message of the form 0∥∗ which B

queries to the signing oracle is the initial message 0∥r.



Confidential Signatures and Deterministic Signcryption 17

– Case 2: If σ = (σ′,m′) then m = m′ and m parses as m′′∥r′∥σ′
r where SS.Ver(pk , 0∥r′, σ′

r) = ⊤.
If (r′, σ′

r) = (r, σr) then we must have that SS.Ver(pk ,m, σ′) = ⊤ and A′ never received (σ′,m)
as a response to a signature oracle query on m. This means that B never received σ′ as a response to
a signature oracle query on 1∥m. Hence, (1∥m,σ′) is a valid forgery.

– Case 3: If σ = (σ′, r′, σ′
r) and (r′, σ′

r) ̸= (r, σr) then (0∥r′, σ′
r) is a valid forgery as the only message

of the form 0∥∗ which B queries to the signing oracle is the initial message 0∥r.
– Case 4: If σ = (σ′, r′, σ′

r) and (r′, σ′
r) = (r, σr) then SS.Ver(pk , 2∥m,σ′) = ⊤ and A′ never

received (σ′, r′, σ′
r) as a response to a signature oracle query on the message m. Thus, B never

received σ′ as a response on a signature query on the message 2∥m. Hence, (2∥m,σ′) is a valid
forgery.

Thus we can conclude that Advseuf−cma
SS′,A′ (k) ≤ Advseuf−cma

SS,B (k) and so that SS′ is unforgeable. Note
the use of the “labels” (0,1,2) in the signing process: this ensures that we can compare different cases
of forgery to different types of signature oracle query. E.g., in Case 2, we can conclude that if A′ never
receives (σ′,m) as a response from the signing oracle for the message m, then B could not have received
σ′ from its signing oracle for the message 1∥m, as if B had received that response then B would have
given the signature (σ′,m) toA′ since as only time that B would make on oracle query on 1∥m is in the
construction of signatures of the form (σ′,m).

We also have to show that SS′ is mezzo-confidential. Let A′ be an attacker against the mezzo-
confidential property of SS′. Let E be the event that either execution of A′

1 outputs a message mi =
m′∥r∥σ′

r. Since r is information theoretically hidden from A′
1, this occurs with probability at most

2 · ℓ(k) · 2−k. If E does not occur then we may build an attacker A against the mezzo-confidentiality of
SS using the attacker A′. A1 runs as follows:

1. A1 receives pk as input.
2. A1 runs A′

1 on pk . A′
1 terminates with the output of a message vector m = (m1, . . . ,mℓ(k)).

3. A1 outputs the message vector m′ = (2∥m1, . . . , 2∥mℓ(k)).

Note that m′ is high entropy and pattern preserving as long as m is high entropy and pattern preserving.
A2 runs as follows:

1. A2 receives the signature vector σ′ = (σ′
1, . . . , σ

′
ℓ(k)) as input.

2. A2 chooses r R← {0, 1}k and queries the signing oracle on 0∥r to receive σr.
3. A2 computes the vector σ = ((σ′

1, r, σr), . . . , (σ
′
ℓ(k), r, σr)).

4. A2 runs A′
2 on σ. It answers any signing oracle queries using its own signing oracle and its knowl-

edge of (r, σr). A′
2 terminates with the output of a bit b′.

5. A2 outputs b′.

If E does not occur then σ contains the exact signatures that would be computed by SS′. Furthermore, the
signing oracle that A′ queries is functionally identical to SS.Sign′. Hence, A outputs b = b′ whenever
A′ outputs b = b′, and so AdvmSig

A′,SS′
(k) ≤ AdvmSig

A,SS(k) + 2 · ℓ(k) · 2−k.
On the other hand, the scheme SS′ is not strongly confidential. A successful algorithm B = (B1,B2)

against the strong confidentiality works as follows. In the first step B1 takes as input the public key pk .
It picks a random message m R← {0, 1}k and invokes its signing oracle SS.Sign(sk , ·) on m in order to
get a signature σ = (σ′, r, σr) on m. Afterwards, B1 outputs (m, t) ← (m∥r∥σr,m). Note that B1 is
signature-free because m ̸= m∥r∥σr. The second algorithm B2 gets as input the tuple (pk ,σ), parses
σ as σ′∥m and outputs m. Obviously, B breaks strong confidentiality with advantage:

Adv sSigB,SS′(k) = |Pr[Expt
sSig−0
B,SS′ (k) = 1]− Pr[ExptsSig−1

B,SS′ (k) = 1]| = 1− 2−k .

⊓⊔

C Relation Between Other Notions of Confidentiality

We establish four other relations in the next four propositions.
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Proposition 12 (Balanced xSig ′ ⇒ Balanced xSig). A scheme is δ-balanced xSig secure if it is δ-
balanced xSig ′ secure for some negligible value δ(k) where x ∈ {w,m, s}.

Proof Let A be an attacker against the δ-balanced xSig security property of the scheme. Since A is
also a δ-balanced xSig ′ attacker, we have that there exists a simulator S for A. In the δ-balanced xSig
experiments, let T0 be the event that t0 = 1 and T1 be the event that t1 = 1. We also define σ∗

b
R←

S(sk ,mb). We can define the xSig advantage as shown in Figure 13. Hence, AdvxSigA (k) is negligible
since AdvxSig

′

A (k) and δ are negligible. ⊓⊔

AdvxSig
A (k) = |Pr[A2(1

k, pk ,σ∗
0) = t0]− Pr[A2(1

k, pk ,σ∗
1) = t0]|

= |Pr[A2(1
k, pk ,σ∗

0) = t0 |T0 ∧ T1] Pr[T0 ∧ T1]

−Pr[A2(1
k, pk ,σ∗

1) = t0 |T0 ∧ T1] Pr[T0 ∧ T1]

+Pr[A2(1
k, pk ,σ∗

0) = t0 | ¬T0 ∧ T1] Pr[¬T0 ∧ T1]

−Pr[A2(1
k, pk ,σ∗

1) = t0 | ¬T0 ∧ T1] Pr[¬T0 ∧ T1]

+Pr[A2(1
k, pk ,σ∗

0) = t0 |T0 ∧ ¬T1] Pr[T0 ∧ ¬T1]

−Pr[A2(1
k, pk ,σ∗

1) = t0 |T0 ∧ ¬T1] Pr[T0 ∧ ¬T1]

+Pr[A2(1
k, pk ,σ∗

0) = t0 | ¬T0 ∧ ¬T1] Pr[¬T0 ∧ ¬T1]

−Pr[A2(1
k, pk ,σ∗

1) = t0 | ¬T0 ∧ ¬T1] Pr[¬T0 ∧ ¬T1]|
= |Pr[A2(1

k, pk ,σ∗
0) = t0 | ¬T0 ∧ T1] Pr[¬T0 ∧ T1]

−Pr[A2(1
k, pk ,σ∗

1) = t0 | ¬T0 ∧ T1] Pr[¬T0 ∧ T1]

+Pr[A2(1
k, pk ,σ∗

0) = t0 |T0 ∧ ¬T1] Pr[T0 ∧ ¬T1]

−Pr[A2(1
k, pk ,σ∗

1) = t0 |T0 ∧ ¬T1] Pr[T0 ∧ ¬T1]| (1)

= Pr[T0] Pr[¬T0] ·
|Pr[A2(1

k, pk ,σ∗
0) = t0 | ¬T0 ∧ T1]− Pr[A2(1

k, pk ,σ∗
1) = t0 | ¬T0 ∧ T1]

+Pr[A2(1
k, pk ,σ∗

0) = t0 |T0 ∧ ¬T1]− Pr[A2(1
k, pk ,σ∗

1) = t0 |T0 ∧ ¬T1]| (2)

= Pr[T0] Pr[¬T0]| ·
|Pr[A2(1

k, pk ,σ∗
0) = t0 | ¬T0 ∧ T1]− Pr[A2(1

k, pk ,σ∗
1) ̸= t1 | ¬T0 ∧ T1]

+Pr[A2(1
k, pk ,σ∗

0) = t0 |T0 ∧ ¬T1]− Pr[A2(1
k, pk ,σ∗

1) ̸= t1 |T0 ∧ ¬T1]|
= Pr[T0] Pr[¬T0] ·

|Pr[A2(1
k, pk ,σ∗

0) = t0 | ¬T0] − Pr[A2(1
k, pk ,σ∗

1) ̸= t1 |T1]

+Pr[A2(1
k, pk ,σ∗

0) = t0 |T0]− Pr[A2(1
k, pk ,σ∗

1) ̸= t1 | ¬T1]| (3)

= Pr[¬T0]|Pr[A2(1
k, pk ,σ∗

0) = t0 |T0] Pr[T0] + Pr[A2(1
k, pk ,σ∗

0) = t0 | ¬T0] Pr[T0]

−Pr[A2(1
k, pk ,σ∗

1) ̸= t1 |T1] Pr[T0]− Pr[A2(1
k, pk ,σ∗

1) ̸= t1 | ¬T1] Pr[T0]|

≤ 1

2
|Pr[A2(1

k, pk ,σ∗
0) = t0 |T0] Pr[T0] + Pr[A2(1

k, pk ,σ∗
0) = t0 | ¬T0] Pr[¬T0]

−Pr[A2(1
k, pk ,σ∗

1) ̸= t1 |T1] Pr[T1]− Pr[A2(1
k, pk ,σ∗

1) ̸= t1 | ¬T1] Pr[¬T1]|+ 6δ

(4)

=
1

2
|Pr[A2(1

k, pk ,σ∗
0) = t0]− Pr[A2(1

k, pk ,σ∗
1) ̸= t1]|+ 6δ

=
1

2
|Pr[S(1k, pk) = t0]− Pr[S(1k, pk) ̸= t1]|+ 6δ + 2AdvxSig′

A (k)

= 2AdvxSig′

A (k) + 7δ (5)

Fig. 13. Bounds for AdvxSig′

A (k). Equation 1 follows from the fact if t0 = t1 then the probability of A2 outputs t0 is the same
as the probability that it outputs t1. Equation 2 follows from the fact that Pr[T0] = Pr[T1] and that T0 and T1 are independent.
Equation 3 follows from the fact that the probability computation no longer depends upon the value of one variable. Equation 4
follows from the fact |Pr[T0] − Pr[T1]| ≤ 2δ due to the balancing property; hence, we may replace an occurrence of Pr[T0]
with Pr[¬T0], Pr[T1], or Pr[¬T1] as long as we add a factor of 2δ. Equation 5 follows from the fact that S has no knowledge
of t0 and guesses t0 with probability at most 1/2 + δ.

Proposition 13. A scheme is δ-balanced xSig secure (for some fixed 0 ≤ δ < 1/2) if it is 0-balanced
xSig secure where x ∈ {w,m, s}.
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Proof Suppose A is xSig secure and that is δ′-balanced for some fixed 0 ≤ δ′ < 1/2. We construct an
attacker A′ which is xSig secure and is 0-balanced. We define A′ = (A′

1,A′
2) as follows:

A′
1
O(inp):

β R← {0, 1}
(m, t) R← AO

1 (inp)
If t = β then return (m, t)

(m, t) R← AO
1 (inp)

Return (m, β)

A′
2
S(1k, pk ,σ)

t′ R← AS
2 (1

k, pk ,σ)
Return t′

It is clear that A′ is 0-balanced; hence, AdvxSigA′ (k) is negligible. We note that the min-entropy µ′ of A′

bounded by

µ′(k) ≤ 2µ(k)

1− 2δ
+ µ

which is negligible since µ is negligible and δ is a fixed value.
If we examine the experiment ExptxSig−b

A′ (k) thenA′ is run twice. We note that the t-value produced
in the second execution is ignored; hence, it is irrelevant whether the m1 is produced during the first
or second execution of A by A′ as the game proceeds identically in both cases. In the first execution of
A′, let E be the event that A′ outputs the message vector m0 produced by the first execution of A. If E
does not occur, then t0 is a (hidden) random bit and the probabilityA2 outputs t0 is 1/2 regardless of the
bit b. If E does occur, then we are essentially playing the xSig security game for A. More formally,

AdvxSigA′ (k) = |Pr[ExptxSig−0
A′ (k) = 1]− Pr[ExptxSig−1

A′ (k) = 1]|
= |Pr[ExptxSig−0

A′ (k) = 1 |E]Pr[E] + Pr[ExptxSig−0
A′ (k) = 1 | ¬E]Pr[¬E]

−Pr[ExptxSig−1
A′ (k) = 1 |E]Pr[E]− Pr[ExptxSig−1

A′ (k) = 1 | ¬E]Pr[¬E]|
= |Pr[ExptxSig−0

A′ (k) = 1 |E]Pr[E]− Pr[ExptxSig−1
A′ (k) = 1 |E]Pr[E]|

= Pr[E]|Pr[ExptxSig−0
A (k) = 1]− Pr[ExptxSig−1

A (k) = 1]|
= Pr[E]AdvxSigA (k)

≥ (1/2− δ)AdvxSigA (k) .

Thus we can conclude that AdvxSigA (k) is negligible since δ is fixed and AdvxSigA′ (k) is negligible. ⊓⊔

Proposition 14 (Balanced xSig ⇒ Boolean xSig). A scheme is boolean xSig secure if it is δ-balanced
xSig secure for some δ ≥ 1/p(x) where x ∈ {w,m, s} and p(x) is any polynomial.

Proof We slightly simplify the corresponding proof by Bellare et al. [4]. Suppose A = (A1,A2) be any
boolean xSig attacker and define a (1/p(x))-balanced attacker A′ = (A′

1,A′
2) as follows:

A′
1
O(inp):

(m, t) R← AO
1 (inp)

i R← {1, . . . , 2p(k) + 1}
If i ∈ {1, . . . , p(k)}

Return (m, 0)
If i ∈ {p(k) + 1, . . . , 2p(k)}

Return (m, 1)
If i = 2p(k) + 1

Return (m, t)

A′
2
S(1k, pk ,σ)

t′ R← A2(1
k, pk ,σ)

j R← {1, . . . , 2p(k) + 1}
If j ∈ {1, . . . , p(k)}

Return 0
If j ∈ {p(k) + 1, . . . , 2p(k)}

Return 1
If j = 2p(k) + 1

Return t′

It is easy to verify that |Pr[A1(inp) = 1] − 1/2| ≤ 1/(2p(k) + 1). Hence, A′ is a (1/p(k))-balanced
attacker. Let E be the event that i = j = 2p(k) + 1 in the above experiment and let σ∗

b
R← S(sk ,mb).
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We can compute the advantage of A′ as:

AdvxSigA′ = |Pr[A′
2(1

k, pk ,σ∗
0) = t0]− Pr[A′

2(1
k, pk ,σ∗

1) = t0]|
= |Pr[A′

2(1
k, pk ,σ∗

0) = t0 |E] Pr[E] + Pr[A′
2(1

k, pk ,σ∗
0) = t0 | ¬E] Pr[¬E]

−Pr[A′
2(1

k, pk ,σ∗
1) = t0 |E] Pr[E]− Pr[A′

2(1
k, pk ,σ∗

1) = t0 | ¬E]Pr[¬E]|
= Pr[E]|Pr[A′

2(1
k, pk ,σ∗

0) = t0 |E]− Pr[A′
2(1

k, pk ,σ∗
1) = t0 |E]| (6)

=
1

(2p(k) + 1)2
AdvxSigA (k)

Equation 6 follows from the fact that if E does not occur then either the output of A1 or A2 (or both) is
an independent variable which is equal to 1 with probability 1/2 and so theA′

2 is correct with probability
1/2 regardless of the value of σ∗. We can conclude that AdvAxSig is negligible as AdvA

′
xSig is negligible

(since the scheme is δ-balanced secure). ⊓⊔

Proposition 15 (Boolean xSig ⇒ xSig). A scheme is xSig-secure if it is boolean xSig-secure where
x ∈ {w,m, s}.

Proof. Consider an attacker A = (A1,A2) against the xSig secure property of the signature scheme.
We define a family of boolean xSig attackers A(r) = (A(r)

1 ,A(r)
2 ) with r ∈ {0, 1}∗. Let ⟨x, y⟩ denote

the inner product of x and y modulo 2 with the convention that x and y are padded with an appropriate
number of zeroes if |x| ̸= |y|. We define A(r) as follows:

A(r)
1 (input):
(m, t) R← A1(input)
s← ⟨t, r⟩
Output (m, s)

A(r)O
2 (1k, pk ,σ):
t′ R← AO

2 (1
k, pk ,σ)

s′ ← ⟨t′, r⟩
Output s′

Since A is a PPT attacker we have that |t| is bounded by a polynomial p(k). We consider a game in
which the challenger plays the boolean xSig game against a random attackerA(r) where r R← {0, 1}p(k).
It is easy to see that AdvboolA(r)(k) ≥ 1

2Adv
xSig
A (k). Hence, there exists a fixed value r for which the

inequality holds and this value can be hardwired into the attacker (using a non-uniform reduction). ⊓⊔

Proposition 16 (xSig ⇒ xSig ′). A scheme is xSig ′ secure if it is xSig secure where x ∈ {w,m, s}.

Proof. Let A = (A1,A2) be an attacker in the xSig ′ security model. We define a simulator for A. Note
that A is also a valid attacker in the xSig security model.

SSS.Sign(sk ,·)(1k, pk):
(m, t) R← AO

1 (input)
Parse m as (m1, . . . ,mn)
For 1 ≤ i ≤ n

Query mi to SS.Sign(sk , ·) oracle and receive σi
Set σ = (σ1, . . . , σn)

t′ R← AS(sk ,·)
2 (1k, pk ,σ)

Output t′

An examination of the security models demonstrates that ExptxSig-0
A (k) = ExptxSig

′−0
A,S (k) and Expt

xSig-1
A (k) =

ExptxSig
′−1

A,S (k). Hence, AdvxSigA (k) = AdvxSig
′

A,S (k) and so the scheme is xSig ′ secure. ⊓⊔

D Constructions of Confidential Signature Schemes

D.1 Confidentiality of Random Oracles

We begin by proving our claim about the confidentiality of random oracles. In order to do this, we first
require a technical result.
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Consider the advantages of two adversaries, where one runs a perfect simulation of the other one
except in case of some “bad” events B0, B1. When the “simulation” events S0, S1 are related to the
“experiment” events E0, E1 conditioned on B0, B1 as follows:

Pr[S0] ≥ Pr[E0 | ¬B0 ] and Pr[¬S1] ≥ Pr[¬E1 | ¬B1 ] ,

i.e., the simulation of experiment 0 succeeds whenever E0 succeeds, given B0 has not happened, and
the simulation of experiment 1 fails whenever E1 fails, given ¬B1, then it holds that:

Lemma 17. Let E0, E1, B0, B1 and S0, S1 be events such that

Pr[E0] ≥ Pr[E1] and Pr[S0] ≥ Pr[E0 | ¬B0 ] and Pr[¬S1] ≥ Pr[¬E1 | ¬B1 ] .

Then

|Pr[E0]− Pr[E1]| ≤ Pr[B0] + Pr[B1] + |Pr[S0]− Pr[S1]| .

Proof. Note that

|Pr[E0]− Pr[E1] | = Pr[E0]− Pr[E1]

= Pr[E0] + Pr[¬E1]− 1

= Pr[E0 ∧B0] + Pr[E0 ∧ ¬B0] + Pr[¬E1 ∧B1] + Pr[¬E1 ∧ ¬B1]− 1

≤ Pr[B0] + Pr[B1] + Pr[E0 | ¬B0 ] + Pr[¬E1 | ¬B1 ]− 1

≤ Pr[B0] + Pr[B1] + Pr[S0] + Pr[¬S1]− 1

≤ Pr[B0] + Pr[B1] + |Pr[S0]− Pr[S1]| .

⊓⊔

Proposition 18 (Confidentiality of Random Oracles). For any adversary A = (A1,A2) where A1

outputs vectors of length ℓ(k) and with min-entropy µ(k) = − log π(k), and where A2 makes at most
qh(k) queries to the random oracle, we have

Adv xHash
H,A (k) ≤ 2 · qh(k) · ℓ(k) · π(k)

for x ∈ {w, s} where A is assumed to be hash-free (in the strong case).

Proof. In the weak case the probability that A2 queries the random oracle in any of the at most qh(k)
queries about one of the preimages of the at most ℓ(k) challenge values (event GUESSb), is at most
qh(k) · ℓ(k) · π(k) in each game. Given that A2 does not make such a query the distribution (over the
choice of H) of A2’s input—and thus of the output—in both cases b = 0 and b = 1 is independent of t0,
noting that A1 does not have access to the hash function. Hence, using the above lemma, the advantage
is at most

AdvwHash
A (k) =

∣∣Pr[ExptwHash−0
A (k) = 1]− Pr[ExptwHash−1

A (k) = 1]
∣∣

≤ Pr[GUESS0] + Pr[GUESS1]

+
∣∣Pr[ExptwHash−0

A (k) = 1
∣∣¬GUESS0

]
− Pr

[
ExptwHash−1

A (k) = 1
∣∣¬GUESS1

]∣∣
≤ 2 · qh(k) · ℓ(k) · π(k).

In the strong case the claim follows as before, observing thatA1 cannot make any query about the values
x0 (resp. x1) by the hash freeness. It therefore holds again that (assuming A2 does not make a “bad”
query) the input and output distribution is independent of t0 in both cases. ⊓⊔
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D.2 Random Oracle Instantiation for Strongly Confidential Signatures

Proposition 19 (Random Oracle Instantiation). If H is a hash function modeled as a random oracle,
then the signature scheme SS′ is strongly confidential. That is, for any attacker A = (A1,A2) against
the strong confidentiality of the signature scheme SS′, where A1 outputs a vector of length ℓ(k) and
with min-entropy µ(k) = − log π(k), and whereA2 asks at most qh oracle queries (signing queries and
direct hash oracle queries), we have

Adv sSig
SS′,A(k) ≤ 2 · qh(k) · ℓ(k) · (2−k + π(k)) .

Proof. The proof is similar to the proof of Proposition 2. There, we have observed that a random or-
acle is strongly confidential as long as the adversary A1 does not query the random oracle about one
of its challenge values m (denoted as hash freeness). Here, the situation is slightly different because
A2 does not receive signatures on the values mi ∈ m directly, but signatures on randomized values
hi ← H(ri,mi). Yet, the idea of applying hash freeness carries over: Let GUESS denote the event that
A1 queries its random oracle on one of the pairs (ri,mi). The probability that this event occurs is
Pr[GUESS] = ℓ(k) · qh(k) · 2−k, where ℓ(k) is the length of the challenge vector and qh denotes the
number of oracle queries. In other words, we can assume that A1 is (quasi) hash-free.

Now consider the attackerA2. The probability thatA2 queries the random oracle about any preimage
of the at most ℓ(k) challenges is at most ℓ(k) · qh(k) ·π(k) in each game (becauseA2 gets r as input and
the messages have entropy π(k)). Analogously to the proof of Proposition 2, we assume that A2 does
not perform such a query. Then the distribution (over the choice of H) of A2’s input, and therefore also
of its output, is independent of t0 in both games. Thus, we conclude that the advantage is at most

Adv
sSig
A (k) ≤ 2 · qh(k) · ℓ(k) · (2−k + π(k)) .

⊓⊔

D.3 Fiat-Shamir Paradigm

Proposition 20 (Fiat-Shamir Instantiation). If H is a hash function modeled as a random oracle, then
the Fiat-Shamir instantiation SS′′ for non-trivial commitments is strongly confidential. More precisely,
for any attacker A = (A1,A2) against the strong confidentiality of the signature scheme SS′′ where
A1 outputs a message vector of length ℓ(k) with min-entropy µ(k) = − log π(k), α has min-entropy
µ′(k) = − log π′(k), and A2 asks at most qh oracle queries (signing queries and direct hash oracle
queries), we have

Adv sSig
SS′′,A(k) ≤ 2 · qh(k) · ℓ(k) · (π(k) + π′(k)).

Proof (sketch). Similar to the proof of Proposition 4 we first argue that the attacker A1 is quasi hash
free. Recall that the commitment α has min-entropy π′(k). Hence, the probability that A1 queries its
random oracle about one of the challenge values hi ← H(α,m) (event GUESS) is Pr[GUESS] = ℓ(k) ·
qh(k) · π′(k). Assuming that A1 is quasi hash free, the desired bound follows analogously to the proof
of Proposition 4. ⊓⊔

D.4 Randomness-Extractor-Based Instantiation

Proposition 21 (Extractor Instantiation). If Ext is an (a, b, n, t, ϵ)-extractor then the extractor instan-
tiation of SS′′′ is strongly confidential. More specifically, for any attacker A = (A1,A2) against the
strong confidentiality of the signature scheme SS′′′, where A1 outputs a vector of length ℓ(k) with con-
ditional min-entropy µ(k) ≥ t(k), we have

Adv sSig
SS′′′,A(k) ≤ 2 · ℓ(k) · ϵ(k).
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Proof. For the proof consider the challenge vector m that the adversary A1 outputs. According to our
construction, each mi ∈m is executed on a randomness extractor obtaining the value hi

R← Ext(mi; ri).
The attacker A2 then obtains a vector of signatures σ where the component σi consists of (σ′

i, ri).

We now modify the experiment slightly substituting all the values hi through random elements
with the same bit length. Let ExptsSig

′−b
A (k) denote the modified experiment. Since the output of the

randomness extractor is statistically close to uniform, we argue that this modification does not change
the success probability of A too much:∣∣∣Pr[ExptsSig−b

A (k) = 1
]
− Pr

[
ExptsSig

′−b
A (k) = 1

]∣∣∣ ≤ ℓ(k) · ϵ(k)

and this holds independently of the bit b. Now, the distribution of A2’s input, and therefore also of its
output, is independent of t0 in both games. Then we can calculate the advantage of A as follows:

Adv
sSig
A (k) =

∣∣∣Pr[ExptsSig−0
A (k) = 1

]
− Pr

[
ExptsSig−1

A (k) = 1
]∣∣∣ .

We apply the triangle inequality obtaining the desired bound:

Adv
sSig
A (k) ≤

∣∣∣Pr[ExptsSig ′−0
A (k) = 1

]
− Pr

[
ExptsSig

′−0
A (k) = 1

]∣∣∣
+

∣∣∣Pr[ExptsSig ′−0
A (k) = 1

]
− Pr

[
ExptsSig

′−1
A (k) = 1

]∣∣∣
+

∣∣∣Pr[ExptsSig ′−1
A (k) = 1

]
− Pr

[
ExptsSig

′−1
A (k) = 1

]∣∣∣
≤ 2 · ℓ(k) · ϵ(k) .

⊓⊔

D.5 Unforgeability

In this section we show that our constructions are unforgeable if the signature scheme is unforgeable and
the hash function (or the extractor )is collision-resistant. Here we consider the more general case of a
collision resistant function H(r,m). We instantiate this function with a collision resistant hash function
modeled as a random oracle (see Section 3.3), or with a collision resistant randomness extractor (see
Section 3.5).

Proposition 22 (Unforgeability). If H is a collision-resistant hash function and SS an unforgeable sig-
nature scheme, then the scheme SS′ is unforgeable. More precisely, for any attacker A′ against the
unforgeability of SS′, making at most qs = qs(k) signature queries, there are attackers B and A with

AdvunfA′,SS′
≤ AdvcolB,H(k) +AdvunfA,SS(k).

where B has the same running time asA′ plus O(TimeSS.Setup(k)+TimeSS.Kg(k)+qs ·TimeSS.Sign′(k)+
qs · k), and the running time of A equals the one of A′ plus O(TimeH.Kg(k) + qs · (TimeSample(k) +
TimeH(k)) + k).

Proof. LetA′ be an efficient adversary against the signature scheme SS′ that queries its signing oracle at
most qs times. Let (ri,mi) denote the corresponding pairs on which the hash function for such queries
is evaluated, and m∗ and r∗ be the corresponding values in the forgery attempt of A′. Also, let COLL

and FORGE denote the events that (r∗,m∗) ̸= (ri,mi) for some i ∈ {1, 2, . . . , qs}, but the hash values
collide, and that A′ successfully outputs a forgery for m∗ ̸= mi for all i = 1, 2, . . . , qs. Then

AdvunfA′,SS′
≤ Pr[COLL] + Pr[FORGE | ¬COLL ]

and it remains to bound the two probabilities.
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Collision-Resistance. We build an adversary B out ofA′, trying to find a collision for the hash function.

Setup. The input of B is H. It generates a key-pair λss ← SS.Setup(1k); (pk ′, sk ′) R← SS.Kg(λss), sets
up an initially empty query list Q, and runs black-box simulation of A′ on input pk = (pk ′, H).

Query. Whenever A′ invokes its signing oracle on a message m, then B runs (r, s) ← Sample(pk),
sets m′ ← H(r,m), and computes the signature σ′ R← SS.Sign(sk ′,m′). It stores the tuple (r,m) in
Q and returns the signature σ = (σ′, r).

Output. Eventually,A′ stops, outputting a potential forgery (m∗, σ∗). B checks whether there exists an
index i ∈ {1, 2, . . . , qs} such that H(r∗,m∗) = H(ri,mi). If so, it stops outputting ((r∗,m∗), (ri,mi)),
and aborts otherwise.

It follows easily from the construction that B achieves the claimed efficiency and that it performs a
perfect simulation of the environment A′. Hence, the advantage of B bounds the probability of event
COLL in the attack of A′. ⊓⊔

E Deterministic Signcryption Schemes

In this section, we provide the proofs of security for the deterministic signcryption schemes. We begin
by showing that the low-entropy security definition implies the high-entropy security definition.

Proposition 23. Any deterministic signcryption scheme SC which is low-entropy confidential is also
high-entropy confidential. In particular, for any adversary A against high-entropy confidentiality, mak-
ing at most qs(k) signcryption queries and where A1 outputs ℓ(k) messages with min-entropy µ(k) =
− log π(k), there exists an adversary Ā such that

AdvhSCR
SC,A (k) ≤ ℓ(k) ·Adv lSCR

SC,Ā(k) + 4 · qs(k) · ℓ(k) · π(k),

where the running time of Ā equals the time of A plus O(k).

Proof. We will assume that the message vector m contains distinct messages. Since the signcryption
scheme is deterministic, we may always remove message duplications from the message vector m and
“fill in” the corresponding ciphertexts in the ciphertext vector C by duplication. That is, we can assume
that we start with an high-entropy attacker A = (A1,A2) which only outputs vectors with distinct
messages.

The proof follows by a hybrid argument. Let A = (A1,A2) be an adversary against the high-
entropy confidentiality of SC = (SC.Setup, SC.Kgs, SC.Kgr, SC.SignCrypt, SC.UnSignCrypt), i.e. A
participates in the experiment ExpthSCR−b

A (k) from Figure 9. We define hybrid experiments Expt i(k),
i = 1, . . . , ℓ(k) + 1 where ℓ(k) = |m| for all possible (m, t) R← A1(λsc , pk

∗
S , pk

∗
R). Each experiment

Expt i(k) proceeds identical to ExpthSCR−0
A (k) except for the following difference in the computation

of the challenge C∗, i.e., for all j = 1, . . . , ℓ(k):

C∗[j]←

{
SC.SignCrypt(λsc , sk

∗
S , pk

∗
R,m1[j]) if j < i

SC.SignCrypt(λsc , sk
∗
S , pk

∗
R,m0[j]) otherwise.

It is easy to see that Expt1(k) = ExpthSCR−0
A (k) whereas Expt ℓ(k)+1(k) = ExpthSCR−1

A (k). Fur-
thermore, considering the messages signcrypted in C∗, these sequences trivially preserve the pattern
according to ⋄i,j .

We construct an adversary Ā = (Ā1, Ā2) against the low-entropy confidentiality of SC which ef-
fectively interpolates between two subsequent hybrid experiments Expt i(k) and Expt i+1(k) as follows
(assuming that for all j ∈ [1, ℓ(k)] messages m0[j] and m1[j] are distinct):
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ĀO
1 (λsc , pk

∗
S , pk

∗
R)

(m0, t0)← AO
1 (λsc , pk

∗
S , pk

∗
R)

(m1, t1)← AO
1 (λsc , pk

∗
S , pk

∗
R)

i R← [1, ℓ(k)]
ω ← (λsc , pk

∗
S , pk

∗
R, i,m0, t0,m1, t1)

Output (m0[i],m1[i], ω)

ĀO
2 (C

∗, ω)
Parse ω as (λsc , pk

∗
S , pk

∗
R, i,m0, t0,m1, t1)

Construct C∗ as follows:
For all j ∈ [1, ℓ(k)]:

C∗[j]←


C∗ if i = j
SC.SignCrypt(sk∗S , pk

∗
R,m0[j]) if j < i

SC.SignCrypt(sk∗S , pk
∗
R,m1[j]) if j > i

t′ R← AO
2 (λsc , pk

∗
S , pk

∗
R,C

∗)
Output t′ = t0

Note that Ā can easily answer signcryption and unsigncryption oracle queries of A2 by relaying the
queries to its own oracles, as long asA2 does not ask SC.SignCrypt(·, pk∗R,m0[i

∗]) or SC.SignCrypt(·, pk∗R,m1[i
∗])

in which case Ā aborts and outputs 0. Let GUESS be the event that A2 makes a signcryption query (in
the high-entropy game) among the at most qs queries for any of the at most 2ℓ(k) messages. Then we
have:

AdvhSCR
A,SC(k)

=
∣∣∣Pr[ExpthSCR-0

A,SC (k) = 1
]
− Pr

[
ExpthSCR−1

A,SC (k) = 1
]∣∣∣

≤ 2 · Pr[GUESS]

+
∣∣∣Pr[ExpthSCR-0

A,SC (k) = 1 ∧ ¬GUESS
]
− Pr

[
ExpthSCR−1

A,SC (k) = 1 ∧ ¬GUESS
]∣∣∣

≤ 4 · qs · ℓ(k) · π(k) +
∣∣∣Pr[Expt1(k) = 1 ∧ ¬GUESS]− Pr

[
Expt ℓ(k)+1(k) = 1 ∧ ¬GUESS

]∣∣∣ .
Let Expt Ā−b

j (k) denote the output of the low-entropy experiment involving Ā and bit b, given that Ā
picks i = j. Taking the probability 1/ℓ(k) for i = j to happen into account, and noting that Ā behaves
identical for b = 0 and b = 1 if A does not trigger event GUESS, we obtain:

Pr[Expt1(k) = 1 ∧ ¬GUESS]− Pr
[
Expt ℓ(k)+1(k) = 1 ∧ ¬GUESS

]
=

ℓ(k)∑
j=1

(Pr
[
Expt j(k) = 1 ∧ ¬GUESS

]
− Pr

[
Expt j+1(k) = 1 ∧ ¬GUESS

]
)

= ℓ(k) ·
ℓ(k)∑
j=1

(Pr
[
Expt Ā−0

j (k) = 1
]
− Pr

[
Expt Ā−0

j+1 (k) = 1
]
)

= ℓ(k) ·
ℓ(k)∑
j=1

(Pr
[
Expt Ā−0

j (k) = 1
]
− Pr

[
Expt Ā−1

j (k) = 1
]
)

= ℓ(k) · (Pr
[
Expt lSCR-0

Ā,SC (k) = 1
]
− Pr

[
Expt lSCR−1

Ā,SC
(k) = 1

]
).

This completes the proof.

Proposition 24. Let SC be a signcryption scheme. Then there exists a signcryption scheme SC′ such
that for any adversaries A′,B′ against SC′ there are adversaries A,B against SC with

AdvhSCR
A′,SC′(k) ≤ AdvhSCR

A,SC(k) + 2 · ℓ(k) · π(k) and Advunf
B′,SC′(k) ≤ Advunf

B,SC(k)

where the running time of A resp. B equals the one of A′ resp. B′ plus O(k). Furthermore, there exists
an adversary C against SC′ with running time O(k) such that

Adv lSCR
C,SC′(k) = 1.

Proof. Take the scheme SC and modify it such that for messages m = 0k the signcryption algorithm
appends 0 to the output, and 1 in any other case. That is, define SC′ as follows (SC.Setup′ ≡ SC.Setup,
SC.Kgs

′ ≡ SC.Kgs and SC.Kgr
′ ≡ SC.Kgr):



26 Alexander W. Dent, Marc Fischlin, Mark Manulis, Dominique Schröder, and Martijn Stam

SC.SignCrypt′(skS , pkR,m):
C ← SC.SignCrypt(skS , pkR,m)
If m = 0k

Return C∥0
Else

Return C∥1

SC.UnSignCrypt′(pkS , skR, C):
Parse C as C ′∥c for c ∈ {0, 1}
m← SC.UnSignCrypt(pkS , skR, C

′)
If c = 0 and m ̸= 0k

Return ⊥
If c = 1 and m = 0k

Return ⊥
Else

Return m

The fact that the derived scheme basically inherits unforgeability follows straightforwardly since
one can simulate the additonal steps easily.

High-Entropy Confidentiality. We show that the derived scheme essentially preserves high-entropy con-
fidentiality. Take an arbitrary adversary A′ against SC′, attacking the high-entropy confidentiality. Con-
struct an adversary A against the underlying scheme SC as follows.

Adversary A1 on input λsc , pk
∗
S , pk

∗
R invokes A′

1 on these keys and runs a black-box simulation.
For every query (pkR,m) of A′

1 to the signcryption oracle A1 forwards the pair to its signcryption
oracle, appends 0 to the reply if m = 0k and 1 otherwise, and forwards the reply to A1. For every
query (pkS , C) of A′

1 to the SC.UnSignCrypt′ oracle adversary A1 parses C as C ′∥c for c ∈ {0, 1}. It
forwards C ′ to SC.UnSignCrypt to receive m and returns ⊥ if c = 0 and m ̸= 0k, and m otherwise.
Algorithm A1 eventually copies the output of A′

1 and stops.
Adversary A2 receives as input λsc , pk

∗
S , pk

∗
R and a vector C∗ of signcryptions. It appends a 1-bit

to each ciphertext and starts to emulate A′
2 on the keys and the augmented ciphertexts. Algorithm A2

answers oracle queries asA1, with one exception: ifA′
2 makes a query C∥0 for some C in the challenge

vector C∗ then A2 returns ⊥ without making an external oracle call.
For the analysis define the event TRIVIALb in experiment ExpthSCR-b

A′ (k) to occur if one of the
messages in mb equals 0k. Note that, since the simulation of A′

1 through A is perfect, the probability of
event TRIVIALb happening is identical in the corresponding experiment of A. Furthermore, given that
there are no trivial messages, A runs a perfect simulation of A′ in both cases b = 0 and b = 1, and
the experiment of A succeeds (resp. fails) in this case if A′ succeeds (resp. fails). Therefore, applying
Lemma 17 from Appendix D, we obtain

AdvhSCR
A′ (k) ≤

∣∣∣Pr[ExpthSCR−0
A′ (k) = 1]− Pr[ExpthSCR−1

A′ (k) = 1]
∣∣∣

≤ Pr[TRIVIAL0] + Pr[TRIVIAL1] +AdvhSCR
A (k)

≤ 2 · ℓ(k) · π(k) +AdvhSCR
A (k).

Note that A2 never queries a challenge ciphertext C to its SC.UnSignCrypt oracle because it sorts
out queries of the form C∥0 by returning ⊥ immediately, without querying its external oracle (and
the challenge ciphertext C∥1 cannot be submitted by A′ by assumption). Since we assume no trivial
messages this behavior is identical to the one of oracle SC.UnSignCrypt′.

Low-Entropy Confidentiality. Construct the following adversary C against low-entropy confidentiality
of SC′ as follows. Adversary C1 outputs m0 = 0k and m1 = 1k and stops. Adversary C2 receives as
input a signcryption C = C ′∥c for c ∈ {0, 1} and outputs c. It is easy to see that C2 predicts the bit b
perfectly, yielding an advantage of 1. ⊓⊔

Theorem 25. If the signature scheme is deterministic, strongly unforgeable, and strongly confidential,
and the encryption scheme is IND-CCA2 secure, then the signcryption scheme is confidential in the
high-entropy model. In particular, if there exists an attacker A against the high-entropy security of the
signcryption scheme (asking ℓ(k) challenge messages and making at most qsc(k) signcryption queries),
then there exist attackersApke ,Ass , andAsunf against the IND-CCA2 security of the encryption scheme,
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against the strong confidentiality of the signature scheme, and against the strong unforgeability of the
signature scheme, such that

AdvhSCR
E+S,A(k) ≤ ℓ(k) · Advcca2PKE,Apke

(k) + AdvsSigSS,Ass
(k) + Advseuf−cma

SS,Asunf
(k) .

where the running times ofApke ,Ass , andAsunf equal the one ofA plus (qsc(k)+ℓ(k))·(TimeSC.SignCrypt(k)+
TimeSC.UnSignCrypt(k)) +O(k).

Proof. Let Sb
i be the event that the adversary wins in game ib, for i ∈ {0, 1, 2, 3} and b ∈ {0, 1}.

Game 0b. For b ∈ {0, 1} these are the experiments ExpthSCR−b
A where an adversarial win is defined as

the experiment outputting 1. By definition we have that

AdvhSCR
PKE,A(k) = Pr

[
S0
0

]
− Pr

[
S1
0

]
.

Game 1b. Define Game 1b (for b ∈ {0, 1}) as the modification (see below) where the unsigncryption
oracle checks whether the ciphertext part c of its input C = (c, σ) corresponds to (part of) a challenge
signcryption Cj (and rejects if this is the case).

SC.UnSignCrypt(—, pkS ,—, C)
Parse C as (c, σ)
(pk ′S ||m′)← PKE.Dec(λpke , sk

∗
R, c)

If pk ′S ̸= pkS , reject
If SS.Ver(λss , pkS , (pk

∗
R||m′), σ) = ⊥, reject

If exists j ∈ ℓ(k) such that (c, σj) = Cj ∈ C∗, reject
Return m′

We claim that for b ∈ {0, 1}

Pr
[
Sb
0

]
− Pr

[
Sb
1

]
≤ Advseuf−cma

SS,Asunf
(k) .

for adversary Asunf defined below.
Note that Games 1b and 0b are identical until the event of a reject in 1b due to existence of a j ∈ ℓ(k)
such that (c, σj) = Cj ∈ C∗. At this point it has already been established that σ is a valid signature
on c under key pkS and that pkS = pk ′S , where pk ′S is the key embedded in c. Since (c, σj) occurs
in C∗, it follows that pk ′S = pk∗S and thus pkS = pk∗S . Note that necessarily σ ̸= σj , because
otherwise C = Cj ∈ C∗ violating non-triviality. Moreover, since the scheme is deterministic,
the only signature (on the message corresponding to c) ever generated by the signcryption oracle
is σj . In other words, σ is a signature forgery under pk∗S (on a previously signed message). For
completeness, Figure 14 contains the description of the forgery adversaryAsunf . Note that signature-
freeness ensures that Asunf did not use its signature oracle on (pk∗R||m′) during the signcryption
simulation.

Game 2b. Define Game 2b (for b ∈ {0, 1}) as the modification (see below) where the unsigncryption
oracle checks whether the ciphertext part c of its input C = (c, σ) corresponds to (part of) a challenge
signcryption Cj before performing any other checks.

SC.UnSignCrypt(—, pkS ,—, C)
Parse C as (c, σ)
If exists j ∈ ℓ(k) such that (c, σj) = Cj ∈ C∗ then reject
else
(pk ′S ||m′)← PKE.Dec(λpke , sk

∗
R, c)

If pk ′S ̸= pkS , reject
If SS.Ver(λss , pkS , (pk

∗
R||m′), σ) = ⊥, reject

Return m′
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ASS.Sign(λss ,sk
∗
S ,·)

sunf (pk∗
S)

λpke ← PKE.Setup(1k)
(pk∗

R, sk
∗
R)← PKE.Kg(λpke)

λsc ← (λss , λpke)
(m, t)← AO

1 (λsc , pk
∗
S , pk

∗
R)

For j ∈ [ℓ[k]]:
Use SS.Sign oracle for
σj ← SS.Sign(λss , sk

∗
S , (pk

∗
R||mj))

cj ← PKE.Enc(λpke , pk
∗
R, (pk

∗
S ||mj))

Cj ← (cj , σj)
t← AO

2 (λsc , pk
∗
S , pk

∗
R,C)

Abort

SC.SignCrypt(—,—, pkR,m)
c← PKE.Enc(λpke , pkR, (pk

∗
S ||m))

If c = cj (only relevant for simulating A2 queries) then
σ ← σj

Else use SS.Sign oracle for
σ ← SS.Sign(λss , sk

∗
S , (pkR||m))

Return C = (c, σ)

SC.UnSignCrypt(—, pkS ,—, C)
Parse C as (c, σ)
(pk ′

S ||m′)← PKE.Dec(λpke , sk
∗
R, c)

If pk ′
S ̸= pkS , reject

If SS.Ver(λss , pkS , (pk
∗
R||m′), σ) = ⊥, reject

If c ∈ c then break with output ((pk∗
R||m′), σ)

Return m′

Fig. 14. Encrypt-and-Sign derived adversary Asunf .

The modified reject order does not change the functionality of SC.UnSignCrypt(λsc , ·, sk∗R, ·) and,
for b ∈ {0, 1}, it holds that Pr

[
Sb
1

]
= Pr

[
Sb
2

]
.

Game 3b. Define Game 3b (for b ∈ {0, 1}) as the modification where the challenger uses encryptions
of 0|m| instead of m, but still signs m. That is the challenge oracle SC.SignCrypt(λsc , sk

∗
S , ·, ·) is

replaced by:

SC.SignCrypt′(—,—, pkR,m)

c← PKE.Enc(λpke , pkR, (pk
∗
S ||0|m|))

σ ← SS.Sign(λss , sk
∗
S , (pkR||m))

Return C = (c, σ)

We claim that for b ∈ {0, 1}

Pr
[
Sb
2

]
− Pr

[
Sb
3

]
≤ ℓ(k)Advcca2PKE,Apke

′(k)

and
Pr

[
S0
3

]
− Pr

[
S1
3

]
≤ AdvsSigSS,Ass

for adversaries Apke
′ and Ass described below. The claim in the theorem follows from collecting

probabilities.

Justification of the hop. For concreteness we will concentrate on b = 0 and show that

Pr
[
S0
2

]
− Pr

[
S0
3

]
≤ Advcca2PKE,Apke

(k) .

for adversary Apke = (Apke1,Apke2) (as defined in Figure 15) against the IND-CCA2 property of
the encryption scheme. The case b = 1 is analagous (with some obvious changes to Apke to take
into account the changed b). Note that Apke is a multi-message IND-CCA2 adversary (asking for
challenge encryption of ℓ(k) messages). A standard hybrid argument can be used to relate this to the
IND-CCA2 advantage of a single challenge adversary Apke

′ such that

Advcca2PKE,Apke
(k) ≤ ℓ(k)Advcca2PKE,Apke

′(k)

as used in the proposition statement.
Consider Apke in the IND-CCA2 game Exptcca−0

PKE,Apke
(k). In this case c will be an encryption of m0

and C will correspond to the answer to A2 in Game 20. In particular, the simulation provided by
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Apke is perfect and A2 finds itself in Game 20. Note furthermore that Apke only uses its IND-CCA2
oracle on ciphertexts not returned by its own challenge oracle.
On the other hand, if Apke finds itself in Exptcca−1

PKE,Apke
(k), then c will consist of a (corrupted)

encryption of a matching set of zero strings and C will correspond to the answer to A2 in Game 30

and this time A2 finds itself in Game 30.
Since Apke inherits its winning condition from A we have that

Pr
[
S0
2

]
− Pr

[
S0
3

]
= Pr

[
Exptcca−0

PKE,Apke
= 1

]
− Pr

[
Exptcca−1

PKE,Apke
= 1

]
= Advcca2PKE,Apke

(k) .

Apke
PKE.Dec(λpke ,sk

∗
R,·)

1 (pk∗
R)

λss ← SS.Setup(1k)
(pk∗

S , sk
∗
S)← SS.Kg(λss)

λsc ← (λss , λpke)
(m′

0, t0)← AO
1 (λsc , pk

∗
S , pk

∗
R)

ω ← (λss , λpke , pk
∗
R, sk

∗
S ,m0, t0)

For all j ∈ [ℓ(k)]:
m0j ← (pk∗

S ||m′
0j )

m1j ← (pk∗
S ||0

|m0j
|
)

Output (m0,m1, ω)

Apke
PKE.Dec(λpke ,sk

∗
R,·)

2 (ω, c)
Parse ω as (λss , λpke , pk

∗
R, sk

∗
S ,m0, t0)

For all j ∈ [ℓ(k)]:
σj ← SS.Sign(λss , sk

∗
S , (pk

∗
R||m0j )

Cj ← (cj , σj)
t← AO

2 (λsc , pk
∗
S , pk

∗
R,C)

if t = t0 return 1 else return 0

SC.SignCrypt(—,—, pkR,m)
c← PKE.Enc(λpke , pkR, (pk

∗
S ||m))

σ ← SS.Sign(λss , sk
∗
S , (pkR||m))

Return C = (c, σ)

SC.UnSignCrypt(—, pkS ,—, C)
Parse C as (c, σ)
If c ∈ c then reject
Use IND-CCA2 oracle for
(pk ′

S ||m′)← PKE.Dec(λpke , sk
∗
R, c)

If pk ′
S ̸= pkS , reject

If SS.Ver(λss , pkS , (pk
∗
R||m′), σ) = ⊥, reject

Return m′

Fig. 15. Encrypt-and-Sign derived adversary Apke = (Apke1,Apke2) with oracle simulation.

ASS.Sign(λss ,sk
∗
S ,·)

ss−1 (pk∗
S)

λpke ← PKE.Setup(1k)
(pk∗

R, sk
∗
R)← PKE.Kg(λpke)

λsc ← (λss , λpke)
(m, t)← AO

1 (λsc , pk
∗
S , pk

∗
R)

For j ∈ [ℓ[k]]:
m′

j ← (pk∗
R||mj)

Return (m′, t)

ASS.Sign(λss ,sk
∗
S ,·)

ss−2 (pk∗
S ,σ

∗)
for all j ∈ ℓ[k]:

cj ← PKE.Enc(λpke , pk
∗
R, (pk

∗
S ||0qj(k)))

Cj ← (cj , σj)
t← AO

2 (λsc , pk
∗
S , pk

∗
R,C)

Return t

SC.SignCrypt(—,—, pkR,m)
c← PKE.Enc(λpke , pkR, (pk

∗
S ||m))

Use SS.Sign oracle for
σ ← SS.Sign(λss , sk

∗
S , (pkR||m))

Return C = (c, σ)

SC.UnSignCrypt(—, pkS ,—, C)
Parse C as (c, σ)
If c ∈ c then reject
(pk ′

S ||m′)← PKE.Dec(λpke , sk
∗
R, c)

If pk ′
S ̸= pkS , reject

If SS.Ver(λss , pkS , (pk
∗
R||m′), σ) = ⊥, reject

Return m′

Fig. 16. Encrypt-and-Sign derived adversary Ass .

Relationship with confidentiality of signature scheme. Let Ass = (Ass−1,Ass−2) as depicted in
Figure 16 be the adversary against strong confidentiality of the signature scheme. It provides a
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perfect environment for A and it is clear that Ass−1 inherits the properties pattern-preserving, high
entropy and signature freeness from A1.
Moreover, if Ass finds itself in ExptsSig−0

Ass
then A finds itself in Game 30, whereas if Ass is in

ExptsSig−1
Ass

, then A is playing Game 31. Therefore (since the winning conditions coincide):

Pr
[
S0
3

]
− Pr

[
S1
3

]
= Pr

[
ExptsSig−0

Ass
= 1

]
− Pr

[
ExptsSig−1

Ass
= 1

]
= AdvsSigSS,Ass

This concludes the proof.
⊓⊔

Proposition 26 (Derandomized Signcryption). Let SC be an unforgeable and high-entropy (resp. low-
entropy) confidential signcryption scheme. Then the scheme SCPRF is a deterministic, unforgeable sign-
cryption scheme which is high-entropy (resp. low-entropy) confidential for distinct queries. That is, for
x ∈ {l, h} and any adversary A = (A1,A2) against xSCR confidentiality, there exist adversaries D
and B = (B1,B2) such that

AdvxSCR
SCPRF,A(k) ≤ 2 ·AdvPRFD (k) + AdvxSCR

SC,B (k) + 2qsc(k) · ℓ(k) · π(k)

whereD’s running time is identical to the one ofA, plus TimeSC.Setup(k)+TimeSC.Kgs(k)+TimeSC.Kgr(k)+
(qsc + ℓ(k)) ·TimeSC.SignCrypt(k)+O(k); the running time of B equals the one ofA plus O(qsc · log qsc).
For any adversaryA against unforgeability, making qsc signcryption requests, there exist adversaries D
and B such that

Advunf
A (k) ≤ AdvPRFD (k) +Advunf

B (k)

whereD runs inA’s time plus TimeSC.Setup(k)+TimeSC.Kgs(k)+TimeSC.Kgr(k)+(qsc+ℓ(k))·TimeSC.SignCrypt(k)+
O(k).

Note that we could use the implication from low-entropy confidentiality to high-entropy confiden-
tiality (Proposition 7) but give a direct proof to obtain better bounds:

Proof. We start with the derandomized scheme SCPRF and show that any unforgeability or confidential-
ity attacker can be turned into one against the original probabilistic scheme SC with essentially the same
success probability. We start with the case of high-entropy confidentiality; the other cases follow below.

High-Entropy Confidentiality. Assume, in a thought experiment, that we replace the pseudorandom
function PRF in the scheme SCPRF by a truly random function. Denote this scheme by SCRND. Note that
this scheme would not be efficiently implementable but it only serves as an intermediate step. We claim
that the advantage of any adversary attacking SCPRF in the high-entropy confidential game is at most
the advantage of attacking SCRND plus the advantage of distinguishing the pseudorandom function PRF

from a truly random function RND:

AdvhSCR
SCPRF,A(k) ≤ AdvhSCR

SCRND,A(k) + 2 ·AdvPRFD (k)

This can be seen as follows. Construct a distinguisherD with oracle access to either an instance PRF(κ, ·)
for a random key κ, or to a truly random function RND(·), via a black-box simulation of A. To be more
precise, we actually consider two distinguishers Db with a bit b hardwired, determining which game
D simulates; but since the two distinguishers behave identical we comprise them in one algorithm.
Algorithm D (with bit b ∈ {0, 1}) simulates all steps in the high-entropy game for b, except that for
signature queries by A and for creating the challenge signcryptions, D calls its oracle to create the
randomness from the message. Distinguisher D eventually runs the check of the experiment and outputs
the corresponding bit.

Clearly, the advantage of A attacking SCRND instead of SCPRF cannot drop by more than twice the
distinguishing advantage of D, where the factor two originates from the case of two distinguishers. We
next argue that, in the experiment involving the scheme SCRND, with high probability the signcryption
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algorithm is never run on the same pair (pkR,m) twice (including the step where the challenge cipher-
texts are created). Here we assume that we first “normalize” A in the sense that none of the challenge
messages are identical. This can be easily fixed by removing such entries from A1’s output and du-
plicating signcryption entries in A2’s input with the help of the ⋄ij relation. Denote the event that the
signcryption algorithm in an attack for bit b is run on the same input again by TWICEb.

– Since we demand signature-freeness, A1 never outputs a message for which it has called the sign-
cryption oracle before.

– The query distinctiveness guarantees thatA never calls the signcryption oracle twice about the same
message-key pair.

Hence, the only case that a signcryption query for (pkR,m) can be made twice, is that A2 calls the
oracle about a message m output by A1. By the high-entropy assumption, though, the probability that
this happens for any of the ℓ(k) messages output byA1 in any of the at most qsc(k) signcryption queries,
is at most

Pr[ TWICEb] ≤ ℓ(k) · qsc(k) · π(k)

independently of the bit b.
Given that event TWICEb does not occur, the random function RND generates a fresh random string

for each signcryption run —as the probabilistic scheme, too, would. But then it follows that the advan-
tage of attacking SCRND compared to the one of attacking the original probabilistic scheme differs by at
most Pr[ TWICE0] + Pr[ TWICE1] (cf. Lemma 17). The claim now follows.

Low-Entropy Confidentiality. The low-entropy case is almsot identical to the high-entropy case. Only
here the adversary A2 is explicitly forbidden to ask the signcryption oracle from either of the two chal-
lenge messages m0,m1, thuis ensuring that algorithm is never executed on the same pair (pkR,m)
twice. The claim then follows analogously.

Unforgeability. Unforgeability of the derandomized version follows as in the original transformation
by Goldreich [16], noting that we only rely on the pseudorandomness of PRF. That is, with the same
step as in the proof for confidentiality one can show that A’s success probability attacking SCPRF and
SCRND can only differ in the distinguishing advantage against the pseudorandom function. Then, in
another step, one can build an adversary B against the underlying (probabilistic) scheme SC which
relays the communication between A and the signcryption oracle, but re-injects previous replies for
identical queries. The success probability of B is identical to the one A attacking SCRND, plus the time
O(kqsc · log qsc) to maintain the list of previous queries. ⊓⊔


