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1 Introduction

Certificateless public key cryptography (CL-PKC), as proposed by Al-Riyami
and Paterson [1], represents an interesting and potentially useful balance be-
tween identity-based cryptography and public key cryptography based on certifi-
cates. It eliminates the key escrow associated with identity-based cryptography
without requiring the introduction of certificates, which pose many operational
difficulties in PKIs. The main idea of CL-PKC is that a user Alice combines two
key components to form her private key: one component (the partial private key,
PPK) is generated by a Key Generation Centre (KGC) using a master secret,
and another component (the secret value) is generated by the user herself. The
user also publishes a public key derived from her secret value; a party who wishes
to encrypt to Alice only needs to have Alice’s identity and public key along with
the KGC’s public parameters. One novel aspect of CL-PKC is the modelling of
adversaries who are capable of replacing the public keys of users with keys of
their choice. This is necessary because there are no certificates to authenticate
users’ public keys in CL-PKC.

The topic of certificateless cryptography has undergone quite rapid develop-
ment, with many schemes being proposed for encryption (CLE) [1, 3, 6, 12, 25]
and signatures (CLS) [1, 20, 22, 33, 36]. One notable feature has been the devel-
opment of a number of alternative security models for CLE that are substantially
weaker than the original model of [1]. These different models are summarised
by Dent [14]. In the model of [1], the attacker is of one of two types. The Type
I attacker models an “outsider” adversary, who can replace the public keys of
users, obtain PPKs and private keys, and make decryption queries. The Type
II attacker models an “honest-but-curious” KGC who is given the master secret
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(and can therefore generate any PPK), can obtain private keys and make de-
cryption queries, but is trusted not to replace any public keys. (We actually use
a slightly stronger model of security for Type II attackers, in which the attacker
can replace public keys providing that they do not allow the attacker to trivially
break the scheme.)

In their original security model, Al-Riyami and Paterson chose to make the
Type I adversary as strong as possible, insisting in their model that a challenger
should correctly respond to decryption queries even if the public key of a user
had been replaced. This is called a Strong Type I attacker in [14]. Currently, the
only published CLE schemes that have been proven secure against strong Type
I adversaries [1, 25] make use of the random oracle model [4]. Notably, Libert
and Quisquater [25] provide a generic construction which converts a CLE scheme
secure against passive adversaries (who do not have access to a decryption oracle)
into a scheme secure against strong adversaries, using a Fujisaki-Okamoto-style
conversion [17]. This conversion allows decryption queries to be handled using a
form of knowledge extraction, but does require the use of random oracles.

Related Work

In 2003, Gentry [19] introduced a different but related concept named certificate
based encryption (CBE). This approach is closer to the context of a traditional
PKI model as it involves a certification authority (CA) providing an efficient
implicit certification service for clients’ public keys.

Subsequent works [34, 32] considered the relations between identity-based
(IBE), certificate based (CBE) and certificateless encryption schemes (CLE) and
established a result of essential equivalence [34] between the three primitives. The
generic transformations of [34, 32] do not use random oracles but those results
do not hold in the full security model developed in [1] for CLE schemes; indeed,
they were even shown not to hold in relaxed CLE models [18].

In [15], Dodis and Katz described generic methods to construct IND-CCA
secure multiple-encryption schemes from public key encryption schemes which
are individually IND-CCA. They proved that their methods apply to the design
of certificate-based encryption schemes [19] and yield CBE schemes without
random oracles. Because of the strong properties required of decryption oracles
in [1], these techniques do not directly apply in the present context. In security
proofs, the technical difficulty is that the simulator does not know the secret
value of entities whose public key was replaced. In other words, the constructions
of [15] are not designed to handle decryption queries for arbitrary public keys
chosen “on-the-fly” by adversaries who may not even know the matching secret
as in the present context.

Other authors [26] have also recently attempted to address the problem of
designing certificateless cryptosystems (or related primitives) in the standard
model. However their results are not presented in the full model of [1]. In par-
ticular, the recent work of Huang and Wong [21] constructs a certificateless
encryption scheme that is secure in the standard model but does not permit a
Strong Type I adversary.
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Finally, a recently initiated research direction considers authorities that ma-
liciously generate system-wide parameters [2]. As we shall see, the model of [2]
makes it even more difficult to devise schemes that are provably secure in the
standard model. Neither of the schemes we present are secure against adversaries
that maliciously generate the system-wide parameters.

Our Contributions

We make two contributions which resolve questions raised by the above debate
concerning CLE security models.

Firstly, we present a generic construction for strongly secure CLE. Our con-
struction uses any CLE scheme and any normal public key encryption (PKE)
scheme as components, but these only need to be secure against passive ad-
versaries. In contrast to [25], our construction does not intrinsically require the
use of random oracles. Instead, we use an extension of the techniques of Naor-
Yung [27] and Sahai [29]; however, some additional ideas are needed to han-
dle decryption queries for adversarially-selected public keys. As it makes use of
non-interactive zero-knowledge (NIZK) proofs for general statements in NP, our
generic construction cannot be regarded as being practical.

Secondly, we provide the first concrete and efficient construction for a CLE
scheme that is secure in the standard model against strong adversaries. In fact,
our scheme is secure against both Strong Type I attackers and Strong Type II
adversaries. The latter represents a natural strengthening of the original Type II
adversary introduced in [1]. The construction is based upon the Waters identity-
based encryption (IBE) scheme, modifying this scheme using ideas from [1]. The
scheme enjoys relatively short public keys and ciphertexts; its security is based
on the hardness of a slight and natural generalisation of the DBDH problem.

Why Consider Strong Decryption Oracles?

There has been some debate on whether the Strong Type I and Strong Type II
security models correctly model the security capabilities of an attacker against
a certificateless encryption scheme [1, 6, 12, 21]. A full discussion of this issue is
given in the survey by Dent [14]. It can be argued that an attacker should be
given access to an oracle if it supplies information that an attacker might be able
to obtain in real life. For example, a decryption oracle provides information about
a message that an attacker might be able to obtain by observing how a system
behaves after receiving and decrypting a ciphertext or by bribing/threatening
the user who received a ciphertext. In certificateless encryption, it is necessary
to model the adversary’s ability to fool a sender into using the wrong public key
when encrypting a message, because public keys are not supported by certificates.
This is done by allowing the adversary to replace public keys at will in the model.
But there is no reason to suppose that a recipient would use anything other than
its own, original private key when decrypting. So there is no practical reason to
require that a decryption oracle for a replaced public key should be available to
the attacker.
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However, we still believe that the results of this paper are of theoretical
interest to the research community, even if they are not practically relevant.
There are several reasons for this:

– The strong models have been widely used in the previous papers and the
question of whether it is possible to construct a scheme that is secure in the
Strong Type I and Strong Type II models without using the random oracle
methodology has been widely discussed. Indeed, it has even been conjectured
that it was impossible to construct schemes that are both Strong Type I and
Strong Type II secure in the standard model. In this paper, we show this
conjecture to be false.

– Even if the strong model is not of practical interest, security in this model
does guarantee security in the weaker, but more practically relevant, security
models. Hence, at a basic level, this paper can be seen to be proving the
security of several certificateless encryption schemes in the standard model
(assuming honest-but-curious KGCs). Of particular interest is the generic
construction presented in Section 3, which demonstrates that certificateless
encryption schemes can be constructed from generic assumptions.

– Lastly, our work demonstrates that it is possible for a polynomial-time
scheme to be secure in a model that allows the attacker access to oracles
that compute non-polynomial-time functions (in this case computing the
decryptions of ciphertexts created using arbitrary public keys). We believe
that the idea of considering the security of schemes in non-polynomial-time
models to be theoretically interesting.

2 Preliminaries

2.1 Notation

We use the following notation. Let ∅ denote the empty bitstring. If A is a deter-
ministic algorithm, then y ← A(x) denotes the assignment to y of the output of
A when run on the input x. If A is a randomised algorithm, then y

$← A(x) the
assignment to y of the output of A when run on the input x with a fresh random
tape. We let y ← A(x; r) denote the assignment to y of the output of A when run
on the input x with the random tape r. If A is a probabilistic polynomial-time
(PPT) algorithm, then we may assume that r is of polynomial length. If S is a
finite set, then y

$← S denotes the random generation of an element x ∈ S using
the uniform distribution. A function ν : N → [0, 1] is said to be negligible if for
all c ∈ N there exists a kc ∈ N such that ν(k) < k−c for all k > kc.

2.2 Certificateless Encryption Schemes

The notion of a certificateless encryption scheme was introduced by Al-Riyami
and Paterson [1]. A certificateless public-key encryption scheme is defined by
seven probabilistic, polynomial-time algorithms:
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– Setup: takes as input a security parameter 1k and returns the master private
key msk and the master public key mpk . This algorithm is run by a KGC
to initially set up a certificateless system.

– Extract: takes as input the master public key mpk , the master private key
msk , and an identifier ID ∈ {0, 1}∗. It outputs a partial private key dID. This
algorithm is run by a KGC once for each user, and the corresponding partial
private key is distributed to that user in a suitably secure manner.

– SetSec: given the master public key mpk and an entity’s identifier ID as
input, and outputs a secret value xID for that identity. This algorithm is run
once by the user.

– SetPriv: takes as input the master public key mpk , an entity’s partial private
key dID and an entity’s secret value xID. It outputs the full private key skID

for that user. This algorithm is run once by the user.
– SetPub: given the master public key mpk and an entity’s secret value xID,

this algorithm outputs a public key pkID ∈ PK for that user. This algorithm
is run once by the user and the resulting public key is widely and freely
distributed. The public-key space PK is defined using mpk and is assumed
to be publicly recognisable: given mpk , public keys having a matching private
key should be easily distinguishable from ill-formed public keys.

– Encrypt: this algorithm takes as input the master public key mpk , a user’s
identity ID, a user’s public key pkID ∈ PK and a message m ∈M. It outputs
either a ciphertext C ∈ C or the error symbol ⊥.

– Decrypt: this algorithm takes as input the master public key mpk , a user’s
private key skID and a ciphertext C ∈ C. It returns either a message m ∈M
or the error symbol ⊥.

We insist that all certificateless encryption schemes satisfy the obvious correct-
ness conditions (that decryption “undoes” encryption).

Dent [14] has surveyed the numerous different security models proposed for
certificateless encryption. In this paper, we will only be concerned with the
Strong Type I and Strong Type II security definitions. Both of these security
models consider attack games that extend the standard IND-CCA attack game
for public-key encryption. In both games, we are concerned with the difference
in probability

AdvCL-CCA-XA (k) = |Pr[ExptCL-CCA-XA (0, k) = 1]− Pr[ExptCL-CCA-XA (1, k) = 1]|

for X ∈ {I, II} where A is any PPT adversary A = (A1,A2) and the experiment
ExptCL-CCA-XA (b, k) is defined as:

ExptCL-CCA-XA (b, k):
(mpk ,msk) $← Setup(1k)
(m0,m1, ID

∗, state) $← A1(1k,mpk , aux )
C∗ $← Encrypt(mb, pkID∗ , ID

∗,mpk)
b′ $← A2(C∗, state)
Output b′
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We insist that A1 outputs messages (m0,m1) such that |m0| = |m1|. The Type I
security model (X = I) and the Type II security model (X = II) are distinguished
by the value aux and the oracles to which the attacker has access. The Type I
model is meant to represent an outside attacker and so aux = ∅. The Type II
model captures the actions of an honest-but-curious KGC and so aux = msk .
We consider the following oracles:

– Request public key: the attacker supplies an identity ID and the oracle
returns the public key pkID for that identity. If pkID has not previously been
defined, the oracle generates it.

– Replace public key: the attacker supplies an identity ID and a public key
pkID ∈ PK, and the oracle replaces any previously generated public key for
ID with pkID. Such a query is only allowed for correctly shaped new keys.
Recall that the model of [1] requires the well-formedness of pkID (and the
existence of a secret value) to be publicly checkable.

– Extract partial private key: the attacker supplies an identity ID and the
oracle returns the partial private key dID for that identity.

– Extract private key: the attacker supplies an identity ID and the oracle
responds with the full private key skID for that identity.

– Strong decrypt (or decrypt): the attacker supplies an identity ID and
a ciphertext C, and the oracle responds by constructing a private key skID

that corresponds to the identity ID and its associated public key. The oracle
returns the decryption of C under this private key. Note that the oracle has
to respond to decryption oracle queries even if the public key for the identity
has been replaced.

Definition 1. A CLE scheme is Strong Type I secure if, for every PPT adver-
sary A that respects the following oracle constraints

– A cannot extract the private key for the identity ID∗ at any time,
– A cannot extract the private key of any identity for which it has replaced the

public key,
– A cannot extract the partial private key of ID∗ if A replaced the public key

pkID∗ before the challenge was issued,
– A2 cannot query the strong decrypt oracle on the challenge ciphertext C∗

for the identity ID∗ unless the public key pkID∗ used to create the challenge
ciphertext has been replaced,

we have that AdvCL-CCA-IA (k) is negligible. In this model, aux = ∅.
Definition 2. A CLE scheme is Strong Type II secure if, for every PPT adver-
sary A that respects the following oracle constraints

– A cannot extract the private key for the identity ID∗ at any time,
– A cannot extract the private key of any identity for which it has replaced the

public key,
– A does not query the partial private key oracle (since it can compute them

itself given msk),
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– A1 cannot output a challenge identity ID∗ for which it has replaced the public
key,

– A2 cannot query the strong decrypt oracle on the challenge ciphertext C∗

for the identity ID∗ unless the public key pkID∗ used to create the challenge
ciphertext has been replaced.

we have that AdvCL-CCA-IIA (k) is negligible. In the Type II model, we have aux =
msk, i.e. A1 takes the master private key as an additional input.

We note that the definition of Type II security only covers honest-but-curious
KGCs, as originally defined by Al-Riyami and Paterson [1]. An alternative defi-
nition, proposed by Au et al. [2], attempts to model security against a KGC that
can maliciously generate its master public and private keys. We note that our
schemes are not secure in this model. Nevertheless, we claim that the original
security model still captures a significant level of security and that the design of
secure standard model schemes fitting the original definitions represents a sig-
nificant step forward in the theory of certificateless encryption. We do not find
it unrealistic to assume that KGCs are honest at key generation time and erase
relevant crucial information in case they are later broken into. Furthermore, it
is difficult to see how a scheme can be proven secure against malicious key gen-
eration centres and outside attackers in the standard model and with strong
decryption oracles using known proof techniques. The recent work of Huang and
Wong [21] proves the security of a scheme against malicious KGCs in the stan-
dard model but does not permit a Strong Type I adversary, so the construction
of such a scheme should still be considered an open problem.

A certificateless encryption scheme is said to be strongly secure if it is both
Strong Type I and Strong Type II secure. A certificateless encryption scheme
is said to be passively secure if it is Strong Type I and Strong Type II secure
against adversaries who make no decryption oracle queries.

3 Generic Construction

In this section we develop a generic construction of a strongly secure certificate-
less encryption scheme from a passively secure certificateless encryption scheme,
a passively secure public key encryption scheme, and a non-interactive zero-
knowledge proof system. We do this by adapting the ideas of Naor-Yung [27]
and Sahai [29] to the certificateless setting. The requirement that the simulator
be able to decrypt ciphertexts encrypted using arbitrary public keys makes the
construction slightly more complicated than in the public-key encryption case.

We first recall the notion of an NP language and that of simulation-sound
non-interactive zero-knowledge proof system. Our requirements are similar to
those of Sahai [29], but slightly more demanding.

Definition 3. A language L ∈ {0, 1}∗ is an NP language (L ∈ NP) if there
exists a (deterministic) Turing machine R that is polynomial-time with respect
to its first input and satisfies:

x ∈ L ⇐⇒ ∃w ∈ {0, 1}∗ such that R(x,w) = 1
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We require a NIZK proof system that is statistically sound, computationally
simulation-sound and computationally zero-knowledge. We require statistical
soundness because (at one point in the proof) we will be forced to simulate
a decryption oracle that can provide functionality that cannot be computed in
polynomial-time, i.e. decrypting ciphertexts that are encrypted under adversar-
ially chosen public keys.

Definition 4. A statistically sound, computationally simulation-sound, and com-
putationally zero knowledge non-interactive zero-knowledge proof system (NIZK)
for a language L ∈ NP is a tuple Π = (f, P, V, S1, S2) where f is a polynomial
and P , V , S1 and S2 are probabilistic, polynomial-time Turing machines that
satisfy the following conditions:

– Complete: For all x ∈ L and all w such that R(x,w) = 1, and for all strings
σ ∈ {0, 1}f(k), we have that V (x, π, σ) = 1 for all π

$← P (x,w, σ).
– Simulation complete: For all x ∈ {0, 1}∗ and all strings (σ, κ) $← S1(1k),

we have that V (x, π, σ) = 1 for all π
$← S2(x, κ). κ can be thought of as a

secret key that allows S2 to produce false proofs.
– Statistically sound: Almost all common random strings σ should not allow

any false theorem to be proven. In other words,

Pr[∃x ∈ {0, 1}∗ \ L ∃π ∈ {0, 1}∗ such that V (x, π, σ) = 1]

is negligible as a function of the security parameter k where the probability
is taken over the choice of σ

$← {0, 1}f(k).
– Simulation sound: For all non-uniform PPT adversaries A = (A1,A2)

we have that AdvNZIK-SSA (k) = Pr[ExptSS
A (k) = 1] is negligible as a function

of k, where

ExptSS
A (k):

(σ, κ) $← S1(1k)
(x, state) $← A1(1k, σ)
π

$← S2(x, κ)
(x′, π′) $← A2(π, state)

Output 1 if and only if:
• (x′, π′) 6= (x, π)
• x′ /∈ L
• V (x′, π′, σ) = 1

– Zero knowledge: For all non-uniform PPT adversaries A = (A1,A2) we
have that

AdvNIZK-ZKB (k) = |Pr[ExptA(k) = 1]− Pr[ExptSA(k) = 1]|

is negligible as a function of k, where

ExptA(k):
σ

$← {0, 1}f(k)

(x,w, state) $← A1(1k, σ)
If R(x, w) = 0, then π ← ∅
Otherwise π

$← P (x,w, σ)
Return A2(π, state)

ExptSA(k):
(σ, κ) $← S1(1k)
(x,w, state) $← A1(1k, σ)
If R(x,w) = 0, then π ← ∅
Otherwise π

$← S2(x, κ)
Return A2(π, state)
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Sahai [29] uses a (single theorem) computationally sound and computa-
tionally zero-knowledge NIZK proof system to construct a (multiple theorem)
computationally sound, computationally simulation-sound and computationally
zero-knowledge NIZK proof system. This construction assumes that one-way per-
mutations exist. A brief examination of the proof verifies that we can construct a
statistically sound, computationally simulation-sound NIZK proof system from
a statistically sound NIZK proof system. Furthermore, it is not difficult to ver-
ify that statistically sound NIZK proof systems can be constructed for any NP
language using the techniques of Feige, Lapidot and Shamir [16] under the as-
sumption that certified trapdoor permutations exist. This condition is relaxed by
Bellare and Yung [5] to require only that trapdoor permutations exist. Therefore
we can construct suitably secure NIZK proof systems under the assumption that
trapdoor permutations exist. Our construction will also make use of a passively-
secure encryption scheme.

Definition 5. A triple of PPT algorithms (G, E ,D) is an encryption scheme if
(1) G takes as input a security parameter 1k and outputs a public key pk and a
private key sk; (2) E takes as input a message m ∈M and a public key pk, and
outputs a ciphertext C ∈ C; and (3) D takes as input a ciphertext C ∈ C and a
private key sk, and outputs either a message m ∈M or the error symbol ⊥. This
encryption scheme is said to be passively secure if the difference in probabilities

AdvPKE-CPAA (k) = |Pr[ExptPKE-CPAA (0, k) = 1]− Pr[ExptPKE-CPAA (1, k) = 1]|

is negligible for every probabilistic, polynomial-time attacker A = (A1,A2). The
experiment ExptPKE-CPAA (b, k) is defined as

ExptPKE-CPAA (b, k):
(pk, sk) $← G(1k)
(m0,m1, state) $← A1(1k, pk)
C∗ $← E(mb, pk)
Return A2(C∗, state)

where we insist that |m0| = |m1|.

We construct a strongly secure CLE scheme from a passively secure one and
two distinct instances of a public-key encryption scheme. We use the NIZK proof
system to prove that these independently generated ciphertexts all encrypt the
same message. Let (Setup, Extract, SetSec, SetPriv, SetPub, Encrypt, Decrypt)
be a passively secure CLE scheme and (G, E ,D) be a passively secure public-key
encryption scheme. Furthermore, let (f, P, V, S1, S2) be a statistically sound and
computationally simulation-sound NIZK proof system for the language

L = {(C1, pk, ID,mpk1, C2,mpk2, C3,mpk3) | ∃ (m, r1, r2, r3)
such that C1 = Encrypt(m, pk, ID,mpk1; r1)
∧ C2 = E(m,mpk2; r2) ∧ C3 = E(m,mpk3; r3)}
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Let (Setup′, Extract, SetSec, SetPriv, SetPub, Encrypt′, Decrypt′) be the cer-
tificateless encryption scheme derived from the passively secure scheme and the
algorithms given in Figure 1. We assume that users’ public key pk and identity
ID are included in their full private key sk. We also assume (for simplicity and
without loss of generality) that the random tapes used by each of the algorithms
is of length poly(k).

Setup′(1k):

(mpk1,msk1)
$← Setup(1k)

(mpk2,msk2)
$← G(1k)

(mpk3,msk3)
$← G(1k)

σ
$← {0, 1}f(k)

mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

Output (mpk ′,msk ′)

Encrypt′(m, pk, ID,mpk ′):
r1, r2, r3

$← {0, 1}poly(k)

C1
$← Encrypt(m, pk, ID,mpk1; r1)

C2
$← E(m,mpk2; r2)

C3
$← E(m,mpk3; r3)

x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3)

π
$← P (x, (m, r1, r2, r3), σ)

C ← (C1, C2, C3, π)
Output C

Decrypt′(C, sk,mpk ′):
x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3)
If V (x, π, σ) 6= 1 then output ⊥
Otherwise set m

$← Decrypt(C1, sk,mpk)
Output m

Fig. 1. A construction for a strongly secure certificateless encryption scheme

Theorem 1. If

– (Setup, Extract, SetSec, SetPriv, SetPub, Encrypt, Decrypt) is a passively
secure certificateless encryption scheme,

– (G, E ,D) is a passively secure public-key encryption scheme,
– (f, P, V, S1, S2) is a statistically sound, computationally simulation-sound

and computationally zero-knowledge NIZK proof system for the NP language

L = {(C1, pk, ID,mpk1, C2,mpk2, C3,mpk3) | ∃ (m, r1, r2, r3)
such that C1 = Encrypt(m, pk, ID,mpk1; r1)
∧ C2 = E(m,mpk2; r2) ∧ C3 = E(m,mpk3; r3)}

then the certificateless encryption scheme given in Figure 1 is secure in the Strong
Type I and Strong Type II models.

The proof is given in Appendix A. It depends upon the fact that the master pri-
vate key msk ′ does not contain the decryption keys for the public-key encryption
schemes (msk2,msk3) or the simulation key κ for the NIZK proof system. We
stress that this proof only works against Strong Type II adversaries who follow
the setup procedure precisely, including the secure deletion of (msk2,msk3) and
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κ. The scheme can be trivially broken by a KGC that can generate the master
public key in an adversarial way. In the standard model, it remains an open
problem to construct a scheme that is strongly secure against adversaries who
can generate the master public key.

Remark 1. This construction can also be thought of as using a NIZK proof
to bind the encryption of a message under a passively secure certificateless en-
cryption scheme to the encryption of the same message under an IND-CCA2
secure encryption scheme. In the specific case of the construction that we have
proposed, the IND-CCA2 encryption scheme is the Sahai [29] construction of an
IND-CCA2 encryption scheme from two passively secure encryption schemes and
a (separate) NIZK proof system. The proofs of security can easily be adapted to
the case where an arbitrary IND-CCA2 secure encryption scheme is used.

Remark 2. We note that we may construct passively secure encryption schemes
and suitably secure NIZK proof systems for any NP language from trapdoor
one-way permutations [29]. Furthermore, we may construct passively secure
CLE schemes from passively secure public-key encryption schemes and pas-
sively secure identity-based encryption schemes [25]. Hence, we can conclude
that strongly secure certificateless encryption schemes exist provided that NIZK
proof systems and passively secure identity-based encryption schemes exist. It
is an open problem to show that a passively secure identity-based encryption
scheme can be constructed from any recognised minimal assumption. Since it
is possible to construct NIZK proof systems [10] and passively secure identity-
based encryption schemes [31] under the DBDH assumption, we can conclude
that there exists a strongly secure certificateless encryption schemes under the
DBDH assumption alone.

Remark 3. Two public-key encryption scheme are required in order to provide
security against attackers with access to a strong decryption oracle. In weaker
security models, where the attacker does not have access to a strong decryption
oracle, a single public-key encryption scheme suffices.

4 Concrete Construction

Our concrete construction for CLE uses bilinear map groups, i.e. groups (G,GT )
of prime order p for which there is an efficiently computable mapping e : G×G→
GT with the following properties:

1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z;
2. non-degeneracy: e(g, h) 6= 1GT whenever g, h 6= 1G.

In such groups, we require the intractability of the following decisional problem
that was suggested for the first time in [7] as a natural variant of the DBDH and
DDH problems.

Definition 6. The Decision 3-Party Diffie-Hellman Problem (3-DDH) is to de-
cide if T = gabc given (ga, gb, gc, T ) ∈ G4. Formally, we define the advantage of
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a PPT algorithm A as

Adv3-DDH

A (k) =
|Pr[1 $← A(ga, gb, gc, T ) | T $← gabc ∧ a, b, c

$← Z∗p]
−Pr[1 $← A(ga, gb, gc, T ) | T $← G ∧ a, b, c

$← Z∗p]|
We will assume that Adv3-DDH

A (k) is negligible for all PPT algorithms A.

Our scheme is easily adapted to work in the more general setting of prime-order
groups (G1,G2,GT ) with a pairing e : G1 × G2 → GT (instantiable from ordi-
nary elliptic curve unlike the symmetric configuration that requires supersingular
curves), in which case we need to use the obvious variant of the above hardness
assumption. We also require a hash function H drawn from a family of collision
resistant hash functions.

Definition 7. A hash function H
$← H(k) is collision resistant if for all PPT

algorithms A the advantage

AdvCR

A (k) = Pr[H(x) = H(y) ∧ x 6= y | (x, y) $← A(1k, H) ∧H
$← H(k)]

is negligible as a function of the security parameter.

Our scheme is an extension of the chosen-ciphertext secure IBE obtained
by applying ideas from Boyen, Mei and Waters [9] to the 2-level hierarchical
extension of the Waters IBE.

Setup(1k, n): Let (G,GT ) be bilinear map groups of order p > 2k and let g be
a generator for G. Set g1 = gγ , for a random γ

$← Z∗p, and pick a group
element g2

$← G and vectors (u′, u1, . . . , un), (v′, v1, . . . , vn) $← Gn+1. We
note that these vectors define the hash functions

Fu(ID) = u′
n∏

i=1

u
ij

j and Fv(w) = v′
n∏

i=1

v
wj

j

where ID = i1i2 . . . in and w = w1w2 . . . wn. We also select a collision-
resistant hash function H : {0, 1}∗ → {0, 1}n. The master public key is

mpk ← (g, g1, g2, u
′, u1, . . . , un, v′, v1, . . . , vn)

and the master secret3 is msk ← gγ
2 .

Extract(mpk, γ, ID): Pick r
$← Z∗p and return dID ← (d1, d2) = (gγ

2 ·Fu(ID)r, gr).
SetSec(mpk): Return a randomly chosen secret value xID

$← Z∗p.
SetPub(xID,mpk): Return pkID ← (X, Y ) = (gxID , gxID

1 ).
SetPriv(xID, dID,mpk): Parse dID into (d1, d2), choose r′ $← Z∗p and set the pri-

vate key to

skID ← (s1, s2) = (dxID
1 · Fu(ID)r′ , dxID

2 · gr′) = (gγxID

2 · Fu(ID)t, gt)

with t = rxID + r′.
3 In order to ensure security against Type II attacks according to definition 2, the

discrete logarithms of elements g2, u′, u1, . . . , un, v′, v1, . . . , vn w.r.t. the base g are
not part of the master secret and should be deleted after key generation by the KGC.
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Encrypt(m, pkID, ID,mpk): To encrypt m ∈ GT , parse pkID as (X, Y ), then check
that it has the right shape (i.e. that e(X, g1)/e(g, Y ) = 1GT ). If so, choose
s

$← Z∗p and compute

C = (C0, C1, C2, C3) ←
(
m · e(Y, g2)s, gs, Fu(ID)s, Fv(w)s

)

where w ← H(C0, C1, C2, ID, pkID).
Decrypt(C, skID,mpk): Parse C as (C0, C1, C2, C3) and the private key skID as

(s1, s2). Check that

e
(
C1, Fu(ID) · Fv(w)

)
= e

(
g, C2 · C3

)

where w ← H(C0, C1, C2, ID, pkID), and reject C if those conditions do not
hold. Otherwise, return

m ← C0 · e(C2, s2)
e(C1, s1)

To check the completeness, we note that private keys (s1, s2) satisfy

e(g, s1) = e(Y, g2) ·e(Fu(ID), s2) and so e(C1, s1) = e(Y, g2)s ·e(C2, s2) .

To speed up the decryption algorithm using ideas from [23], we observe that the
receiver can randomly choose α

$← Z∗p and directly return

m = C0 · e(C2, s2 · gα) · e(C3, g
α)

e(C1, s1 · Fu(ID)α · Fv(w)α)

which is the actual plaintext if C was properly encrypted and a random element
of GT otherwise. The well-formedness of C is thus implicitly checked and a
product of three pairings suffices to decipher the message. This is sufficient to
satisfy our security models; however, it should be noted that this system has the
disadvantage of outputting a random message when presented with an invalid
ciphertext. This may be a problem in some applications. In the same way, the
public key validation can be made implicit at encryption: given pkID = (X, Y ),
the sender picks β

$← Z∗p and computes C0 = m · e(Y, gs
2 · gsβ)/e(X, gsβ

1 ) which
actually encrypts m whenever pkID has the correct shape and results in an invalid
ciphertext otherwise.

We have the following security results for this concrete scheme:

Theorem 2. Suppose A is a Strong Type I adversary that runs in time t, makes
at most qd decryption queries, qppk partial private key queries, and qpk private
key queries. Then there exists

– an adversary A′ against the 3-DDH problem that has advantage Adv3-DDH

A′ (k)
and runs in time O(t) + O(ε−2 ln δ−1) for sufficiently small ε and δ, and

– an adversary A′′ against the collision resistance of the hash function H that
runs in time O(t) and has advantage AdvCR

A′′(k)
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such that the advantage of A is bounded by

AdvCL-CCA-I

A (k) < 8(qppk + qpk)qd(n + 1)2 · (8 ·Adv3-DDH

A′ (k) + δ) + AdvCR

A′′(k) .

The proof of this theorem is given in Appendix B; it uses ideas from [9,
31]. Namely, the mapping Fv is chosen so as to have Fv(w) = g

Jv(w)
2 gKv(w), for

certain functions Jv and Kv, in the simulation of the attack environment. Hence,
for any valid ciphertext C = (C0, C1, C2, C3), we have C1 = gs and C3 = Fv(w)s,
for some s ∈ Z∗p, and the simulator can extract

gs
2 = (C3/C

Kv(w)
1 )1/Jv(w)

whenever Jv(w) 6= 0 mod p. Hence, the simulator can compute e(Y, g2)s regard-
less of whether the public key pk = (X,Y ) was replaced or not.

Theorem 3. Suppose A is a Strong Type II adversary that runs in time t and
makes at most qd decryption queries and qpk private key queries. Then there
exists

– an adversary A′ against the 3-DDH problem that has advantage Adv3-DDH

A′ (k)
and runs in time O(t) + O(ε−2 ln δ−1) for sufficiently small ε and δ, and

– an adversary A′′ against the collision resistance of the hash function H that
runs in time O(t) and has advantage AdvCR

A′′(k)

such that the advantage of A is bounded by

AdvCL-CCA-II

A (k) < 8qpkqd(n + 1)2 · (8 ·Adv3-DDH

A′ (k) + δ) + AdvCR

A′′(k) .

The proof of this theorem is given in Appendix B and uses similar ideas to
the proof of Theorem 2.

The reductions given in the proofs of Theorems 2 and 3 leave definite room
for improvement since chosen-ciphertext security is achieved by applying the
Boyen-Mei-Waters techniques [9] to a 2-level HIBE.

One solution to improve the reduction is to use the Canetti-Halevi-Katz [11]
or Boneh-Katz [8] techniques that significantly lengthen ciphertexts and/or in-
troduce additional assumptions for the security of the scheme. If we borrow
ideas from [35] and generate the checksum value C3 = F (w)s using a chameleon
hash function [24] in instead of Waters’ “hash”, an interesting tradeoff can be
achieved. In the above variant, a single element of Z∗p (acting as random coins
used to compute of the chameleon hash function) should be appended to ci-
phertexts and the degradation factor qd is avoided in both reductions. Using a
chameleon hash function built upon Pedersen’s discrete-logarithm-based trap-
door commitment [28], the resulting combination does not imply any additional
intractability assumption for the security of the final scheme.
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A Proof of Theorem 1

We will use standard game hopping techniques. The proof is simple, but it re-
quires a large number of game hops. In the language of Shoup [30], almost every
transition will be a “transition based on indistinguishability”. We seek to bound
the advantage of an arbitrary probabilistic polynomial-time attacker attacker A

AdvCL-CCA-XA (k) = |Pr[ExptCL-CCA-XA (0, k) = 1]− Pr[ExptCL-CCA-XA (1, k) = 1]|

for X ∈ {I, II}. The proof strategy is the same for both Type I and Type II
security. First, we re-write ExptCL-CCA-XA (b, k) as ExptCL-CCA-XA (α, β, γ, k) where
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ExptCL-CCA-XA (α, β, γ, k):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
σ

$← {0, 1}f(k)

mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1 , r∗2 , r∗3
$← {0, 1}∞

C∗1
$← Encrypt(mα, pkID∗ , ID

∗,mpk1; r∗1)
C∗2

$← E(mβ ,mpk2; r∗2)
C∗3

$← E(mγ ,mpk3; r∗3)
x∗ ← (C∗1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2,

C∗3 ,mpk3)
w∗ ← (mb, r

∗
1 , r∗2 , r∗3)

π∗ $← P (x∗, w∗, σ)
C∗ ← (C∗1 , C∗2 , C∗3 , π∗)
b′ $← A2(C∗, state)

Hence,
ExptCL-CCA-XA (b, k) = ExptCL-CCA-XA (b, b, b, k) .

The proof strategy is given in Figure 2. It is clear that if we can show that the
difference between the success probabilities in successive games is negligible, then
we will have shown that the difference in probabilities between the first and last
game is negligible, and can therefore conclude that the proposed certificateless
encryption scheme is secure.

Game Description Transition

Game 1 This game is identical to ExptCL-CCA-XA (0, k)

Game 2

We change the way in which the decryption oracle works. To
decrypt a ciphertext (C1, C2, C3, π), instead of searching for the
unique message which encrypts to the given ciphertext (a non-
polynomial-time operation), we simply decrypt the ciphertext C3

using msk3.

Statistically sound

Game 3
We simulate the NIZK proof in the challenge ciphertext rather
than generating a proper NIZK proof. This will allow us later to
produce false proofs.

Zero knowledge

Game 4 We change the value of α from 0 to 1. Type X security

Game 5 We change the value of β from 0 to 1.
Security of the

encryption scheme

Game 6

It would be nice if, at this stage, we could change γ from 0 to 1.
However, if we were to try to do this, we would run into a problem
as we would not be able to simulate the decryption oracle. Hence,
we change the way the decryption oracle works. A ciphertext
(C1, C2, C3, π) is now decrypted by decrypting the ciphertext C2

using the msk2.

Simulation-sound

Game 7 We change the value of γ from 0 to 1.
Security of the

encryption scheme

Game 8
We produce the NIZK proof in the challenge ciphertext using the
correct algorithm.

Zero knowledge

Game 9

We change the way the decryption oracle works back to the cor-
rect method, i.e. the oracle searches for the unique value m gives
the ciphertext when encrypted. This games is now identical to
ExptCL-CCA-XA (1, k)

Statistically sound

Fig. 2. The proof strategy for proving Theorem 1
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Remark. The construction of secure public key encryption schemes presented by
Sahai [29] only requires the combination of two passively secure components with
a NIZK. It may be wondered why our construction requires three passively secure
components (two public-key encryption schemes and a certificateless encryption
scheme). The use of two public-key encryption schemes in our CLE construction
allows us to simulate the strong decryption oracles. If we were to use a single
public-key encryption scheme, then we would be unable to simulate the strong
decryption oracle when we make the game hop based on the security of that
encryption scheme. This is because we cannot decrypt arbitrary ciphertexts using
the private key of the certificateless encryption scheme. It should be noted that
if we only require security in a model without strong decryption oracles, then a
single public-key encryption scheme suffices.

Theorem 4. Let

– Π = (Setup, Extract, SetSec, SetPriv, SetPub, Encrypt, Decrypt) be a pas-
sively secure certificateless encryption scheme,

– Γ = (G, E ,D) be a passively secure public-key encryption scheme,
– Σ = (f, P, V, S1, S2) be a statistically sound, computationally simulation-

sound and computationally zero-knowledge NIZK proof system for the lan-
guage

L = {(C1, pk, ID,mpk1, C2,mpk2, C3,mpk3) | ∃ (m, r1, r2, r3)
such that C1 = Encrypt(m, pk, ID,mpk1; r1)
∧ C2 = E(m,mpk2; r2) ∧ C3 = E(m,mpk3; r3)} ,

– and let Π ′ = (Setup′, Extract, SetSec, SetPriv, SetPub, Encrypt′, Decrypt′)
be the certificateless encryption scheme defined by Π and the algorithm con-
tained in Figure 1.

If A = (A1,A2) is any probabilistic, polynomial-time adversary in Strong Type
I security model, then

AdvCL-CCA-IA (k) ≤ 2AdvNIZK-Sim(k) + 2AdvNIZK-ZKB (k)
+ 2AdvPKE-CPAB (k) + AdvNIZK-SSB (k) + AdvCL-CPA-IB (k) .

If A = (A1,A2) is an probabilistic, polynomial-time adversary in the Strong Type
II security model, then adversary in Strong Type I security model, then

AdvCL-CCA-IIA (k) ≤ 2AdvNIZK-Sim(k) + 2AdvNIZK-ZKB (k)
+ 2AdvPKE-CPAB (k) + AdvNIZK-SSB (k) + AdvCL-CPA-IIB (k) .

Proof The proof uses standard game hopping techniques.

Game 1 and Game 2 – Simulating the decryption oracle (part 1)
Let Game 1 be identical to ExptCL-CCA-XA (0, k).
Let Game 2 be identical to Game 1 except that we change the way in which

the decryption oracle handles decryption queries. In Game 2, the decryption
oracle uses the following algorithm to decrypt ciphertexts:
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Decrypt′(C, sk,mpk):
x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3)
If V (x, π, σ) 6= 1 then output ⊥
Otherwise set m

$← D(C3,msk3)
Output m

Furthermore, let

AdvNIZK-Sim(k) = Pr[∃x ∈ {0, 1}∗ \ L ∃π ∈ {0, 1}∗
such that V (x, π, σ) = 1|σ $← {0, 1}f(k)] ,

which is negligible as a function of k by the assumption that Σ is a statistically
sound NIZK proof system. We will need to use the following basic lemma:

Lemma 1. Let A, B and E be events in some probability space and suppose
that Pr[A|¬E] = Pr[B|¬E]. Then |Pr[A]− Pr[B]| ≤ Pr[E].

We may now state and prove the lemma which captures the difficulty associated
with this game hop.

Lemma 2.

|Pr[A outputs 1|A plays Game 1]− Pr[A outputs 1|A plays Game 2]|
≤ AdvNIZK-Sim(k)

Proof Game 1 and Game 2 proceed identically unless A submits a decryp-
tion query (C1, C2, C3, π) for which x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3)
satisfies V (x, π, σ) = 1 but Decrypt(C1, skID,mpk) 6= D(C3,msk3). Let E be
the event that this occurs, and let A and B be the events that A outputs 1
in Game 1 and Game 2 respectively. Note if E occurs, then x /∈ L; hence,
Pr[E] ≤ AdvNIZK-Sim. The result can now be proven by applying Lemma 1. ut

Game 3 – Simulating the challenge ciphertext (part 1)
We next replace the proof π∗ used in the challenge ciphertext with a simulated

proof. Let Game 3 be identical to Game 2 except that the proof π∗ in the
challenge encryption is produced using the simulated proof algorithms, rather
than the real proof algorithm. In other words, we define Game 3 to be:

Game 3(k):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
(σ, κ) $← S1(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1 , r∗2 , r∗3
$← {0, 1}∞

C∗1
$← Encrypt(mb, pkID∗ , ID

∗,mpk1; r∗1)
C∗2

$← E(mb,mpk2; r∗2)
C∗3

$← E(mb,mpk3; r∗3)
x∗ ← (C∗1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2,

C∗3 ,mpk3)
π∗ $← S2(x∗, κ)
C∗ ← (C∗1 , C∗2 , C∗3 , π∗)
b′ $← A2(C∗, state)
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Lemma 3.

|Pr[A outputs 1|A plays Game 2]− Pr[A outputs 1|A plays Game 3]|
≤ AdvNIZK-ZKB (k)

where B is an algorithm that runs in approximately the same time as A.

Proof Consider the following probabilistic, polynomial-time algorithm B = (B1,B2)
against the zero knowledge property of the NIZK proof system Σ:

B1(1k, σ):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1 , r∗2 , r∗3
$← {0, 1}∞

C∗1
$← Encrypt(m0, pkID∗ , ID

∗,mpk1; r∗1)
C∗2

$← E(m0,mpk2; r∗2)
C∗3

$← E(m0,mpk3; r∗3)
x∗ ← (C∗1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2, C

∗
3 ,mpk3)

w∗ ← (mb, r1, r2, r3)
Output (x∗, w∗, state)

B2(π∗, state):
C∗ ← (C∗1 , C∗2 , C∗3 , π∗)
b′ $← A2(C∗, state)
If b′ = b then output 1
Otherwise output 0

It is easy to see that B can handle all of A’s oracle queries trivially (using its
knowledge of msk ′) except for the decryption oracle queries. This it handles by
first checking whether V (x, π, σ) = 1 and (if so) responding with D(C3,msk3).
Therefore, it is easy to see that

Pr[A outputs 1|A plays Game 2] = Pr[ExptB(k) = 1]

and

Pr[A outputs 1|A plays Game 3] = Pr[ExptSB(k) = 1] .

Hence, the lemma holds by the definition of computational zero knowledge. ut

Game 4 – The passive Type X security of the certificateless scheme

Let Game 4 be identical to Game 3 except that, when we construct the
challenge ciphertext, the Encrypt algorithm is applied to m1 rather than m0. In
other words,
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Game 4(k):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
(σ, κ) $← S1(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1 , r∗2 , r∗3
$← {0, 1}∞

C∗1
$← Encrypt(m1, pkID∗ , ID

∗,mpk1; r∗1)
C∗2

$← E(m0,mpk2; r∗2)
C∗3

$← E(m0,mpk3; r∗3)
x∗ ← (C∗1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2,

C∗3 ,mpk3)
π∗ $← S2(x∗, κ)
C∗ ← (C∗1 , C∗2 , C∗3 , π∗)
b′ $← A2(C∗, state)

Let AdvCL-CPA-XB (k) = AdvCL-CCA-XB (k) for all probabilistic, polynomial-time ad-
versaries B which make no decryption oracle queries. This value will be negligible
of the certificateless scheme in question is passively secure.

Lemma 4.

|Pr[A outputs 1|A plays Game 3]− Pr[A outputs 1|A plays Game 4]|
≤ AdvCL-CPA-XB (k)

where B is an algorithm that runs in approximately the same time as A.

Proof Consider the following probabilistic, polynomial-time adversary B = (B1,B2)
against the passive security of the certificateless encryption scheme Π:

B1(1k,mpk1):
(σ, κ) $← S1(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
(m0,m1, ID

∗, state) $← A1(1k,mpk ′)

B2(C∗1 , state):
r∗2 , r∗3

$← {0, 1}∞
C∗2

$← E(m0,mpk2; r∗2)
C∗3

$← E(m0,mpk3; r∗3)
x∗ ← (C∗1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2,

C∗3 ,mpk3)
π∗ $← S2(x∗, κ)
C∗ ← (C∗1 , C∗2 , C∗3 , π∗)
b′ $← A2(C∗, state)

Note that B may answer all of A’s oracle queries using its own oracles, except
for A’s decryption oracle queries. B may answer A’s decryption oracle queries
directly using msk3. Therefore, it is easy to see that

Pr[A outputs 1|A plays Game 3] = Pr[ExptCL-CPA-XB (0, k) = 1]

and
Pr[A outputs 1|A plays Game 4] = Pr[ExptCL-CPA-XB (1, k) = 1] .

Hence, the lemma holds by the definition of a passively secure certificateless
encryption scheme. ut

Game 5 – The passive security of the encryption scheme (part 1)
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Let Game 5 be identical to Game 4 except that, when we construct the
challenge ciphertext, the first instance of the public key encryption algorithm E
is applied to m1 rather than m0. In other words,
Game 5(k):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
(σ, κ) $← S1(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1 , r∗2 , r∗3
$← {0, 1}∞

C∗1
$← Encrypt(m1, pkID∗ , ID

∗,mpk1; r∗1)
C∗2

$← E(m1,mpk2; r∗2)
C∗3

$← E(m0,mpk3; r∗3)
x∗ ← (C∗1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2,

C∗3 ,mpk3)
π∗ $← S2(x∗, κ)
C∗ ← (C∗1 , C∗2 , C∗3 , π∗)
b′ $← A2(C∗, state)

Lemma 5.

|Pr[A outputs 1|A plays Game 4]− Pr[A outputs 1|A plays Game 5]|
≤ AdvPKE-CPAB (k)

where B is an algorithm that runs in approximately the same time as A.

Proof Consider the following probabilistic, polynomial-time adversary B = (B1,B2)
against the passive security of the public-key encryption scheme Γ :

B1(1k,mpk2):
(σ, κ) $← S1(1k)
(mpk1,msk1)

$← Setup(1k)
(mpk3,msk3)

$← G(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
(m0,m1, ID

∗, state) $← A1(1k,mpk ′)

B2(C∗2 , state):
r∗1 , r∗3

$← {0, 1}∞
C∗1

$← Encrypt(m1, pkID∗ , ID
∗,mpk1; r∗1)

C∗3
$← E(m0,mpk3; r∗3)

x∗ ← (C∗1 , pkID∗ , ID
∗,mpk1, C

∗
2 ,mpk2,

C∗3 ,mpk3)
π∗ $← S2(x∗, κ)
C∗ ← (C∗1 , C∗2 , C∗3 , π∗)
b′ $← A2(C∗, state)

Note that B can answer all of A’s oracle queries using its knowledge of msk1 and
msk3. Therefore, it is easy to see that

Pr[A outputs 1|A plays Game 4] = Pr[ExptPKE-CPAB (0, k) = 1]

and
Pr[A outputs 1|A plays Game 5] = Pr[ExptPKE-CPAB (1, k) = 1] .

Hence, the lemma holds by the definition of a passively secure public-key en-
cryption scheme. ut

Game 6 – Simulating the decryption algorithm (part 2)

It would be nice if, at this stage, we could use the same argument as in Game
5 to move to a game in which m1 was encrypted by the second instance of the
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public-key encryption scheme. Unfortunately, we cannot do this at the moment.
The reason for this is that, in the adversarial algorithm B which we used to relate
Game 4 and Game 5, we used our knowledge of msk3 in order to simulate the
decryption algorithm. Therefore, if we were to try and change the second instance
of public-key encryption scheme to encrypt m1, then we would not know msk3

and therefore would not be able to simulate the decryption algorithm. In order
to solve this problem, we change the decryption algorithm so that it decrypts
ciphertexts using msk2 rather than msk3.

Let Game 6 be identical to Game 5 except that the decryption algorithm
used by the decryption oracle is changed to

Decrypt′(C, sk,mpk):
x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3)
If V (x, π, σ) 6= 1 then output ⊥
Otherwise set m

$← D(C2,msk2)
Output m

Lemma 6.

|Pr[A outputs 1|A plays Game 5]− Pr[A outputs 1|A plays Game 6]|
≤ AdvNIZK-SSB (k)

where B is an algorithm that runs in approximately the same time as A.

Proof We apply Lemma 1 for this result. Let A and B be the events that A out-
puts 1 in Game 5 and Game 6 respectively. Let E be the event that A submits
a ciphertext (C1, C2, C3, π) to the decryption oracle such that D(C2,msk2) 6=
D(C3,msk3) but x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3) satisfies V (x, π, σ) =
1. Note that if E does not occur, then we must have that D(C2,msk2) =
D(C3,msk3) and so Game 5 and and Game 6 proceed identically. Furthermore,
note that if E does occur then we have found a pair (x, π) such that x /∈ L but
V (x, π, σ) = 1. Now, by Lemma 1, we have that

|Pr[A outputs 1|A plays Game 5]− Pr[A outputs 1|A plays Game 6]| ≤ Pr[E] .

We now construct an adversary against the simulation-soundness of the NZIK
proof system whose advantage is related to Pr[E]. Consider the probabilistic,
polynomial-time adversary B = (B1,B2) where B1(1k, σ) acts as follows:
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B1(1k, σ):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1 , r2, r∗3
$← {0, 1}∞

C∗1
$← Encrypt(m1, pkID∗ , ID

∗,mpk1; r∗1)
C∗2

$← E(m1,mpk2; r∗2)
C∗3

$← E(m0,mpk3; r∗3)
x∗ ← (C∗1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2,

C∗3 ,mpk3)
Output (x∗, state)

B2(π∗, state):
C∗ ← (C∗1 , C∗2 , C∗3 , π∗)
b′ $← A2(C∗, state)
Output (∅, ∅)

For all oracle queries except decryption oracle queries, B responds to A correctly
using its knowledge of msk ′. If A queries the decryption oracle with a ciphertext
(C1, C2, C3, π) then B computes x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3) and
checks that V (x, π, σ) = 1. If not, B returns ⊥ to A. Otherwise, B checks that
D(C2,msk2) = D(C3,msk3). If not, B outputs (x, π) as a false proof and halts.
Otherwise, B returns D(C2,msk2) to A.

It is clear to see that if E occurs, then B will output a false proof and
so break the simulation-soundness of the NIZK proof system. In other words,
Pr[E] ≤ AdvNIZK-SSB (k). This completes the proof. ut

Game 7 – The passive security of the encryption scheme (part 2)
This game hop is similar to the hop between Game 4 and Game 5. Let Game

7 be identical to Game 6 except that when we construct the challenge ciphertext,
the second instance of the public key encryption algorithm E is applied to m1

rather than m0. In other words,
Game 7(k):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
(σ, κ) $← S1(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1 , r∗2 , r∗3
$← {0, 1}∞

C∗1
$← Encrypt(m1, pkID∗ , ID

∗,mpk1; r∗1)
C∗2

$← E(m1,mpk2; r∗2)
C∗3

$← E(m1,mpk3; r∗3)
x∗ ← (C∗1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2,

C∗3 ,mpk3)
π∗ $← S2(x∗, κ)
C∗ ← (C∗1 , C∗2 , C∗3 , π∗)
b′ $← A2(C∗, state)

Lemma 7.

|Pr[A outputs 1|A plays Game 6]− Pr[A outputs 1|A plays Game 7]|
≤ AdvPKE-CPAB (k)

where B is an algorithm that runs in approximately the same time as A.
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This lemma is proven in exactly the same way as Lemma 5.

Game 8 – Simulating the challenge ciphertext (part 2)

We now start to restore the certain elements in the game. We begin by
removing the simulated proof. Let Game 8 be identical to Game 7 except that
we use the real proof algorithm to create the challenge ciphertext. In other words,

Game 8(k):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
σ

$← {0, 1}f(k)

mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1 , r∗2 , r∗3
$← {0, 1}∞

C∗1
$← Encrypt(m1, pkID∗ , ID

∗,mpk1; r∗1)
C∗2

$← E(m1,mpk2; r∗2)
C∗3

$← E(m1,mpk3; r∗3)
x∗ ← (C∗1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2,

C∗3 ,mpk3)
w∗ ← (mb, r

∗
1 , r∗2 , r∗3)

π∗ $← P (x∗, w∗, σ)
C∗ ← (C∗1 , C∗2 , C∗3 , π∗)
b′ $← A2(C∗, state)

Lemma 8.

|Pr[A outputs 1|A plays Game 7]− Pr[A outputs 1|A plays Game 8]|
≤ AdvNIZK-ZKB (k)

where B is an algorithm that runs in approximately the same time as A.

This lemma is proven in exactly the same way as Lemma 3.

Game 9 – Simulating decryption (part 3)

Lastly, we restore the decryption algorithm to its original state. Let Game 9
be identical to Game 8 except that the decryption algorithm now works properly:

Decrypt′(C, sk,mpk):
x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3)
If V (x, π, σ) 6= 1 then output ⊥
Find the unique message m such that C = Encrypt(m, pk ID, ID,mpk)
Output m

Lemma 9.

|Pr[A outputs 1|A plays Game 8]− Pr[A outputs 1|A plays Game 9]|
≤ AdvNIZK-Sim(k)

This lemma is proven in exactly the same way as Lemma 2. However, Game 9
is identical to ExptCL-CCA-XA (1, k). Combining all of the results of the lemmas give
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us that

AdvCL-CCA-XA (k) = |Pr[ExptCL-CCA-XA (0, k) = 1]− Pr[ExptCL-CCA-XA (1, k) = 1]|
= |Pr[A outputs 1|A plays Game 1]

− Pr[A outputs 1|A plays Game 9]|
≤ 2AdvNIZK-Sim(k) + 2AdvNIZK-ZKB (k) + 2AdvPKE-CPAB (k)

+ AdvNIZK-SSB (k) + AdvCL-CPA-XB (k) .

Hence, AdvCL-CCA-XA (k) is negligible as a function of the security parameter, and
Π ′ is Strong Type I and Strong Type II secure. ut

B Proof of Theorem 2 and Theorem 3

Proof. (of Theorem 2). The proof proceeds by a sequence of games. All games
involve a Type I attacker AI who attempts to guess a hidden bit d for which she
eventually outputs a guess d′. For all i, we call Si the event that Ai is successful
(i.e. that d′ = d) in Game i and we denote by Advi = |Pr[Si]−1/2| the advantage
of AI .

We use the following game hopping technique suggested by Dent [13]. Sup-
pose Game i is such a game where AI wins with probability Si. Consider an
event E that may occur during AI ’s execution such that:

– E is detectable by the simulator;
– E is independent of Si;
– Game i and Game i+1 are identical unless E occurs, in which case the game

halts and outputs random bit.

Then we have Advi+1 = |Pr[Si+1]− 1
2 | = Pr[¬E]|Pr[Si+1]− 1

2 | = Pr[¬E] ·Advi.

Game 1: In this game, AI is interacting with the actual attack environment.
Namely, B generates the master key, the public parameters and the initial user’s
public keys and secret values following the specification of the scheme. We also
assume that the environment B can answer decryption queries without knowing
the matching secret values for changed public keys. In this real attack, let PPK =
{ID1, . . . , IDqppk

} denote the inputs of partial private key queries and PK =
{ID′1, . . . , ID′qpk

} be the set of identities queried for private key extraction. Let
also D = {w1, . . . , wqd

} be the set of strings wj = H(C0, C1, C2, IDj , pkj) involved
in decryption queries. Finally, let (ID?, pk ID?) denote the target identity/public
key pair involved in the challenge phase and let C? = (C?

0 , C?
1 , C?

2 , C?
3 ) be the

returned challenge ciphertext and w? = H(C?
0 , C?

1 , C?
2 , ID?, pk?).

Game 2: Here, we change the generation of the master public key. The attack
environment picks a, b

$← Z∗p to set g1 = ga, g2 = gb. It also picks κu, κv ∈
{0, . . . , n}. Let τu and τv be integers such that τu(n + 1), τv(n + 1) < p. We
will define these values explicitly later on. The environment randomly selects
x′u

$← Zτu , x′v
$← Zτv and vectors (xu,1, . . . , xu,n), (xv,1, . . . , xv,n) of elements

with xu,j ∈ Zτu , xv,j ∈ Zτv for all j. It also draws y′u, y′v
$← Zp and vectors



28 Alexander W. Dent, Benôıt Libert, and Kenneth G. Paterson

(yu,1, . . . , yu,n), (yv,1, . . . , yv,n) with yu,j , yv,j
$← Zp for all j. The remaining

master public key elements are chosen to be

u′ = g
x′u−κuτu

2 gy′u uj = g
xu,j

2 gyu,j for 1 ≤ j ≤ n (1)

v′ = g
x′v−κvτv

2 gy′v vj = g
xv,j

2 gyv,j for 1 ≤ j ≤ n. (2)

This change obviously does not affect the distribution of the master public key.
Hence, Pr[S1] = Pr[S2] and Adv1 = Adv2.

Game 3: This game is identical to Game 2 except that the environment halts if
the attacker submits a decryption query (C, ID, pk) for a well-formed ciphertext
C = (C0, C1, C2, C3) where w is either equal to the same value as a previously
submitted ciphertext or w is equal to w? in the post challenge phase. For such a
legal decryption query, we have C 6= C? or (ID, pk) 6= (ID?, pk?). In either case,
this implies a collision for H. Hence, we can construct an algorithm A′′ such
|Pr[S1]− Pr[S2]| ≤ AdvCR

A′′(k).
It may initially be thought that it is not possible to build the algorithm A′′

in such a way that it runs in polynomial-time, as the algorithm has to simulate
the responses of the strong decryption oracle, which is a non-polynomial-time
function. However, we note that the strong decryption oracle is only required to
decrypt ciphertexts under the action of a well-formed public key (i.e. a public key
pk ID = (X, Y ) where e(g1, X) = e(g, Y )), therefore we can assume that X = gxID

and Y = gxID
1 for some (possibly unknown) value xID. For such a public key we

may form a private key s1 = gγxID

2 Fu(ID)t and s2 = gt by choosing a value of
g2 = gz and computing s1 = XγzFu(ID)t. Hence, the private key can always be
computed and the decryption oracle will work correctly.

Game 4: We modify the environment so that it flips a coin cmode
$← {0, 1} at

the outset of the game. If cmode = 0, it bets that AI will choose to be challenged
on an identity of replaced public key (and never extracts the matching partial
private key). If cmode = 1, it expects AI to rather extract the partial private key
of the target entity at some point.

At the challenge phase, if cmode = 0 and AI has not replaced the challenge
public key, then B aborts and simulates A’s output as d′ $← {0, 1}. Similarly, B
aborts if cmode = 1 and AI has replaced the challenge public key. Since cmode is
completely hidden from AI , this new abortion rule applies with probability 1/2.
The Dent game hopping argument [13] yields Adv4 = 1

2 ·Adv3.

Games 5 and 6: We alter the generation of the challenge ciphertext. To this
end, we consider values from (1)-(2) which allow defining functions

Ju(ID) = x′u +
n∑

j=1

ijxu,j − κuτu, Ku(ID) = y′u +
n∑

j=1

ijyu,j ,

Jv(w) = x′v +
n∑

j=1

wjxv,j − κvτv, Kv(w) = y′v +
n∑

j=1

wjyv,j ,

taking as input n-bit strings ID = i1 . . . in and w = w1 . . . wn. For any strings
ID, w ∈ {0, 1}n, Fu(ID) = u′ · ∏n

j=1 u
ij

j = g
Ju(ID)
2 · gKu(ID) and Fv(w) = v′ ·
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∏n
j=1 v

wj

j = g
Jv(w)
2 · gKv(w). Game 5 is the same as Game 4 except that, af-

ter AI outputs her guess d′ for d, the environment B checks whether Ju(ID?) =
Jv(w?) = 0 mod p. If Ju(ID?) 6= 0 mod p or Jv(w?) 6= 0 mod p, B aborts and sim-
ulates AI ’s output using a random d′ $← {0, 1}. Since values (x′u, xu,1, . . . , xu,n)
and (x′v, xv,1, . . . , xv,n) are information theoretically hidden from AI , it can only
produce ID? so that Ju(ID?) = 0 mod p by chance. Therefore

Pr[Ju(ID?) = 0 mod p] = Pr[Ju(ID?) = 0 mod p|Ju(ID?) = 0 mod τu]
·Pr[Ju(ID?) = 0 mod τu]

=
1

τu(n + 1)

and we similarly have Pr[Jv(w?) = 0 mod p] = 1
τv(n+1) since the event Jv(w?) =

0 mod p is easily seen to occur by pure chance. Hence, the game hopping argu-
ment of [13] yields Adv5 = Adv4/τuτv(n + 1)2.

In Game 6, we actually modify the way the challenge ciphertext is con-
structed. The environment B introduces a new variable c

$← Z∗p and sets C?
1 = gc.

Let pkID? = (X?, Y ?) be entity ID?’s public key at the challenge phase. The en-
vironment flips a coin d? $← {0, 1} and computes

C?
0 = md? · e(Y ?, g2)c

C?
2 = C?

1
Ku(ID?) = (gc)Ku(ID?)

C?
3 = C?

1
Kv(w?) = (gc)Kv(w?)

where w? = H(C?
0 , C?

1 , C?
2 , ID?, pkID?). The returned ciphertext (C?

0 , C?
1 , C?

2 , C?
3 )

has the correct distribution since Ju(ID?) = Jv(w?) = 0 mod p. We clearly have
Adv6 = Adv5.

In Games 7 and 8, we modify the treatment of private key, partial private
key and decryption queries.

Game 7: We change Game 6 so that, after AI outputs her guess d′, the envi-
ronment B checks if one of the following events occurs:

• cmode = 0 and Ju(IDi) = 0 mod τu for some IDi ∈ PPK with i ∈ {1, . . . , qppk}.
• Ju(IDj) = 0 mod τu for some IDj ∈ PK where j ∈ {1, . . . , qpk}.
• Jv(wl) = 0 mod τv for some wl ∈ D where l ∈ {1, . . . , qd}.

Let E be the event that any of these conditions hold. It would be nice, at this
point, if we could apply the Dent game hopping lemma. It is easy to see that
E is recognisable, but we cannot be sure that E is independent of S6. It might
be the case that there exists two sequences of oracle queries for which Pr[E]
is significantly different for each sequence and that A can choose to use one
sequence in a manner that somehow depends upon the challenge message md.

We avoid this problem by using the “re-normalisation” technique of Waters
[31]. We derive a non-negligible lower bound for the probability that ¬E occurs
for any set of oracle queries, estimate the probability that E occurs for the
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particular set of oracle queries that occurred during the execution of A, and add
“artificial aborts” to make sure that A aborts with exactly the probability given
by the lower bound.

We begin by deriving the theoretical lower bound. For simplicity, we only
consider the case where cmode = 1. The case where cmode = 0 is similar.

Pr[¬E] = Pr[
∧

ID∈PK

Ju(ID) 6= 0 mod τu

∧

w∈D

Jv(w) 6= 0 mod τv

| Ju(ID?) = 0 mod τu ∧ Jv(w?) = 0 mod τv]

= Pr[
∧

ID∈PK

Ju(ID) 6= 0 mod τu | Ju(ID?) = 0 mod τu]

· Pr[
∧

w∈D

Jv(w) 6= 0 mod τv | Jv(w?) = 0 mod τv]

We may handle each of these two terms independently.

Pr[
∧

ID∈PK

Ju(ID) 6= 0 mod τu | Ju(ID?) = 0 mod τu]

= 1− Pr[
∨

ID∈PK

Ju(ID) = 0 mod τu | Ju(ID?) = 0 mod τu]

≥ 1−
∑

ID∈PK

Pr[Ju(ID) = 0 mod τu | Ju(ID?) = 0 mod τu]

= 1− qpk

τu

The other term is handled similarly. We therefore have that

Pr[¬E] ≥
{

(1− qd

τv
)(1− qpk

τu
) if cmode = 1

(1− qd

τv
)(1− qppk+qpk

τu
) if cmode = 0

If we set τv = 2qd, τu = 2qpk if cmode = 1 and τu = 2qppk + 2qpk if cmode = 0,
then we have Pr[¬E] ≥ 1/4.

As we’ve mentioned, this is only a theoretical lower bound for the abort
probability. We wish to arrange it so that the abort probability is exactly 1/4.
To this end, we estimate the probability that the sequence of oracle queries that
A has made will cause an abort by repeatedly picking values for x′u, xu,j , x′v and
xv,j and testing to see whether these values will cause an abort for the sequence
of oracle queries that A made. Note that this does not involve re-running the
attacker A, but instead merely checking to see whether the simulator aborts
with the set of oracle queries that A made during its first execution. Note also
that we do not constrain the values of x′u, xu,j , x′v and xv,j to “fit” the public
key value — we may assume that the y values are chosen so that the public
key elements are as in the original execution of A. Let η′ be the probability
that we do not have to abort for the given sequence of queries made by A, i.e.
η′ = Pr[¬E]. Let η′′ be the probability estimate for η′ given by the repeated



Certificateless Encryption Schemes Strongly Secure in the Standard Model 31

sampling of the x values. The Chernoff bound implies that for ε ≥ 0, δ ≥ 0
and O(ε−2 ln δ−1) samples, we have that Pr[|η′ − η′′| ≥ ε] ≤ δ. We have already
shown that η′ ≥ 1/4. If A’s execution did not abort, we force an artificial abort
with probability (η′′ − 1/4)/η′′ (whenever η′′ ≥ 1/4). In such a situation, the
environment assumes that A output a random value d′. The probability that an
abort occurs is now given by:

Pr[Abort] = Pr[Natural Abort] + Pr[Artificial Abort]

= (1− η′) +
η′′ − 1/4

η′′
η′

= 1− η′ + (η′′ − 1/4)
η′

η′′

≤ 1− η′ + (η′′ − 1/4)
η′

η′ − ε

= 1− η′ + (η′′ − 1/4)(1 +
ε

η′ − ε
)

≤ 1− η′ + (η′′ − 1/4)(1 +
4ε

1− 4ε
) as η′ ≥ 1/4

≤ 1− η′ + (η′′ − 1/4)(1 + 5ε) as 1
1−4ε ≤ 5/4 for sufficiently small ε

≤ 1− η′ + (η′ + ε− 1/4)(1 + 5ε)
≤ 3/4 + 6ε + 5ε2

Hence, an abort does not occur with probability at least 1/4 − O(ε) providing
|η′ − η′′| ≤ ε (which itself occurs with probability 1 − δ). We first say that an
error occurs if |η′ − η′′| > ε (which adds a constant δ term) and then apply
Dent’s game hopping lemma. We conclude that Adv7 ≥ (Adv6− δ)(1/4−O(ε)).
For sufficiently small ε, we may conclude that Adv7 ≥ (Adv6 − δ)/8.

Game 8: We effectively change the treatment of AI ’s queries. Let A = ga be a
random element such that a is unknown to B. We first change the generation of
the master public key. Depending on cmode, g1 is generated in different ways.

• If cmode = 0, B sets g1 = A (and does not know the master secret a).
• If cmode = 1, it sets g1 = gγ for a randomly chosen γ

$← Z∗p which is kept for
later use.

Queries: once started, AI issues queries whose treatment may depend on cmode.

– Request public key queries for an identity ID:

• If cmode = 0, B randomly picks xID
$← Z∗p, returns pkID ← (gxID , gxID

1 ).
• If cmode = 1, B picks xID

$← Z∗p and returns pkID ← (AxID , AγxID).

– Replace public key queries for an input (ID, (X̃, Ỹ )): B ensures that (X̃, Ỹ )
has the correct shape and performs the replacement.

– Extract partial private key queries on an identity ID:
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• if cmode = 0, B aborts if Ju(ID) = 0 mod τu as in the previous game.
Otherwise (observe that Ju(ID) 6= 0 mod τu implies Ju(ID) 6= 0 mod p),
it draws r

$← Z∗p and returns dA = (d1, d2) where

d1 ← Fu(ID)r · g−
Ku(ID)
Ju(ID)

1 = ga
2 · Fu(ID)r̃ d2 ← gr · g−

1
Ju(ID)

1 = gr̃

where r̃ = r − a
Ju(ID) .

• if cmode = 1, B uses the master key msk = γ to compute partial private
keys following the specification of the scheme.

– Extract private key queries on an input ID: as previously, B aborts if
Ju(ID) 6= 0 mod τu. If not, we necessarily have Ju(ID) 6= 0 mod p. Let pkID =
(X,Y ) be the (unreplaced) public key for ID: the environment draws t

$← Z∗p
and computes

skID = (s1, s2) =
(
Fu(ID)t · Y −Ku(ID)

Ju(ID) , gt · Y −1/Ju(ID)
)

=

{(
gaxID
2 · Fu(ID)t̃, gt̃

)
with t̃ = t− axID

Ju(ID) if cmode = 0(
gaγxID

2 · Fu(ID)t̃, gt̃
)

with t̃ = t− aγxID

Ju(ID) if cmode = 1

(Recall that in the case cmode = 0 the secret value is xID and the implicitly
defined master key value is a. In the case cmode = 1 the implicitly defined
secret value is axID and γ is the master key.)

– Decryption queries for a valid ciphertext C = (C0, C1, C2, C3) encrypted
for an entity ID using pkID = (X, Y ) (which may have been replaced by
the attacker): let w = H(C0, C1, C2, ID, pk). As in the previous game, B
aborts and chooses a random d′ $← {0, 1} if Jv(w) = 0 mod τv. Otherwise,
Jv(w) 6= 0 mod p and we have C3 = (gJv(w)

2 gKv(w))s and C1 = gs for some
s ∈ Z∗p. Hence, B is able to extract

gs
2 =

(
C3/C

Kv(w)
1

)1/Jv(w)

which allows B to compute e(Y, g2)s and m = C0/e(Y, g2)s regardless of
whether (X, Y ) is the original public key or not.

We observe that the altered generation of the master key does not prevent B to
answer AI ’s queries as in Game 7. This implies Adv8 = Adv7.

Game 9: We again alter the generation of the challenge ciphertext. For the
variables b, c

$← Z∗p respectively introduced in Games 2 and 6, let C?
1 = gc and

T = Abc.

• If cmode = 0, let pkID? = (X?, Y ?) be entity ID?’s current public key. For a
binary coin d? $← {0, 1}, B computes

C?
0 = md? · e(X?, T ) (3)
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which equals C?
0 = md? · e(gx?

, T ) = md? · e(gax?

, gbc) = md? · e(Y ?, g2)c.
Then, B computes w? = H(C?

0 , C?
1 , C?

2 , ID?, pkID?). If Jv(w?) 6= 0 mod p,
B aborts as previously. Otherwise, it defines C?

2 = (gc)Ku(ID?) and C?
3 =

(gc)Kv(w?) and returns (C?
0 , C?

1 , C?
2 , C?

3 ).

• If cmode = 1, B retrieves the value xID? s.t. pkID? = (AxID? , AγxID? ), flips a
coin d? $← {0, 1}, computes

C?
0 = md? · e(g, T )γxID? , (4)

computes w? = H(C?
0 , C?

1 , C?
2 , ID?, pkID?). As previously, B aborts if Jv(w?) 6=

0 mod p. Otherwise, it sets C?
2 = (gc)Ku(ID?) and C?

3 = (gc)Kv(w?) and re-
turns (C?

0 , C?
1 , C?

2 , C?
3 ).

As long as Jv(w) = 0 mod p, these changes do not affect the distribution of the
challenge ciphertext and Adv9 = Adv8.

Game 10: We again alter the challenge phase. This time, the environment “for-
gets” the values b, c and simply retains g2 = gb and C?

1 = gc. The challenge
ciphertext is constructed following (3) and (4) as in Game 9 but using a ran-
domly chosen T

$← G this time. In Game 10, the whole simulation only depends
on the values ga, gb, gc and the simulator does not use a, b, c at all. The tran-
sition between Game 9 and Game 10 is clearly based on indistinguishability:
both games are equal unless there exists a PPT algorithm A′ that distinguishes
T = gabc from random. Therefore, we have |Pr[S9] − Pr[S10]| ≤ Adv3-DDH

A′ (k).
Besides C?

0 now perfectly hides md? and is completely independent from d?.
Therefore Pr[S10] = 1/2.

This completes the game hopping. We now combine the various inequalities
arising in our game hopping steps. We have

Adv7 = Adv8 = Adv9 ≤ Adv3-DDH
A′ (k)

and
Adv5 = Adv6 ≤ 8 ·Adv7 + δ.

Since Adv5 = Adv4/(τuτv(n + 1)2), τu ≤ 2(qppk + qpk) and τv = 2qd, we get

Adv4 < 8(qppk + qpk)qd(n + 1)2 · (8 ·Adv3-DDH
A′ (k) + δ).

We also have Adv3 = 2 ·Adv4 and

Adv1 = Adv2 = |Pr[S2]− 1
2
| ≤ |Pr[S2]− Pr[S3]|+ |Pr[S3]− 1

2
|

= AdvCR
A′′(k) + Adv3.

Combining the above, we finally obtain

Adv1 < 8(qppk + qpk)qd(n + 1)2 · (8 ·Adv3-DDH
A′ (k) + δ) + AdvCR

A′′(k)

which completes the proof. ut
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Proof. (of Theorem 3). The proof is very similar to that of Theorem 2. The
differences are in Games 8, 9 and 10. Recall that the adversary AII never makes
partial private key queries and receives the master key msk := γ at the beginning
of the game. In Game 8, the environment proceeds as in the case cmode = 1 in
the proof of Theorem 2 and hands msk = γ to AII . All queries are handled as in
the cases cmode = 1 and the challenge ciphertext is computed following equation
(4) in Game 9. ut


