
Aggregate Signcryption

Alexander W. Dent

Qualcomm Research

Abstract. Signcryption schemes provide an efficient messaging system for data that needs
to be sent with data confidentiality, data integrity and data origin authentication. However,
the bandwidth overhead for the use of signcryption in a network in which a large number of
messages need to be sent may be high. Motivated by aggregate signature schemes, we propose
the concept of an aggregate signcryption scheme. An aggregate signcryption scheme allows
distinct signcryption ciphertexts intended for the same recipient to be merged into a single
signcryption ciphertext of smaller size without losing any of their security guarantees. This
has the potential to provide significant bandwidth savings. We propose security models for
this scheme, analyse the trivial generic constructions, propose an efficient new scheme, and
analyse the bandwidth requirements of these schemes for a practical distributed database
application.

1 Introduction

One of the most fundamental challenges for secure communication is end-to-end security for mes-
sage transmission. This problem has been solved in many contexts using different technologies. In
this paper we concentrate on the use of public-key cryptography to give data confidentiality, data
integrity and origin authentication for message transmission. The original version of the problem
was solved with the invention of public-key encryption and digital signature schemes [15]. Efficient
combinations of public-key encryption and digital signatures are known as signcryption schemes
[30] and can provide computationally efficient secure message transmissions.

This paper explores the concept of aggregate signcryption – a topic first introduced in the
identity-based setting [28] and later explored in the certificateless setting [24]. This discussion will
focus on the traditional public-key setting. Aggregate signcryption schemes take the conceptual
ideas of aggregate signature schemes and apply them to signcryption schemes. An aggregate sign-
cryption scheme allows individual signcryption ciphertexts intended for the same recipient to be
aggregated into a single (shorter) combined ciphertext without losing any of the security guaran-
tees that would be present if the original signcryption ciphertexts were transmitted individually.

In other words, the aggregate ciphertext still provides a mechanism for message transmission
with data confidentiality, data integrity and origin authentication, but with significantly reduced
overhead. We stress that the aggregation algorithm is entirely public – it can be performed by any
entity given a number of signcryption ciphertexts and the corresponding public keys.

This allows for signcryption ciphertexts intended for a single receiver to be combined within
the network. If a network node receives two signcryption ciphertext which need to be routed to
the same receiver, then the node can run the aggregation algorithm and forward the aggregate
signcryption ciphertext at a reduced bandwidth cost.

In this paper, we explore the concept of aggregate signcryption in the public-key setting (in-
cluding a model for a new type of attack which we term a denial of decryption attack). We analyse
the obvious mechanisms for constructing an aggregate signcryption scheme through the combina-
tion of a public-key encryption scheme and an aggregate signature scheme (Section 4). We show
that two of the four classic combination mechanisms, Encrypt-then-Sign (EtS) and Commit-then-
Encrypt-and-Sign (CtE&S), lead to secure aggregate signcryption schemes. Next we develop a
specific example of an aggregate signcryption scheme which has high bandwidth efficiency (Sec-
tion 5) through a novel non-trivial optimisation of an encrypt-then-sign construction using the
Boneh-Franklin identity-based encryption scheme [10] and the BGLS aggregate signature scheme
[11]. The proof relies on the random oracle methodology.

Lastly, in Section 6, we analyse an example of the aggregate signcryption scheme in practice.
We consider implementing the direct construction of Section 5 in the Gaian database system [6].
The Gaian database is a dynamic, distributed, federated database system in which data is held in
nodes in an evolving database “graph”. The database is federated in the sense that a node which
wishes to process a query on data that is not held locally will flood the database graph with queries
for that data and collate the responses. The database is designed for use in scenarios which include
military applications and so there is a strong requirement for secure message transmission in mobile
networks with limited bandwidth. This makes aggregate signcryption an excellent candidate for
securing intra-node communication in the Gaian database (particularly for the query response
messages which every node has to produce and which are all sent to a single recipient). Our
results show that the new scheme provides significant bandwidth savings compared to existing
solutions (more than 13% when compared to the best existing comparable solution).

2 Preliminaries

2.1 Notation

Let ← denote assignment and
$← denote random assignment. Thus, if S a finite set, then y

$← S
denotes the assignment to y of a uniform random element of S. We assume that any vector x
is an ordered set of elements (x(1), . . . , x(n)) for some n. If A is a deterministic algorithm than

y ← A(x) denotes the output of A given input x. If A is a probabilistic algorithm then y
$← A(x)

denotes the output of A given input x and fresh random coins. Some algorithms may output an
“invalid” symbol ⊥. If we want to assess whether the output A(x) has some property, then we will
assume that ⊥ never has that property unless explicitly stated.

2.2 Aggregate Signatures

Aggregate signcryption schemes can be considered to be motivated by aggregate signature schemes;
hence, it is useful to consider the purpose and security of aggregate signature schemes. An aggregate
signature scheme [11] is a tuple of PPT algorithms (Gen, Sign, Aggregate, Ver).

– The key-generation algorithm generates a public/private key pair (pk , sk)
$← Gen(1k).

– The signing algorithm takes as input a message m and the private key sk , and outputs a

signature σ
$← Sign(sk ,m).

– The aggregation algorithm Aggregate takes as input a vector of public keys pk , a vec-
tor of messages m and a vector of signatures σ, and outputs an aggregate signature σ ←
Aggregate(pk ,m,σ).

– The verification algorithm Ver takes as input a vector of public keys pk , a vector of messages
m and an aggregate signature σ, and outputs either the valid symbol > or an invalid symbol
⊥.

We require that if σ(i) $← Sign(sk (i),m(i)) for 1 ≤ i ≤ n and σ
$← Aggregate(pk ,σ), then

Ver(pk ,m, σ) = >. We also assume that if σ
$← Sign(sk ,m) then Aggregate(pk , σ) = σ and so

the verification algorithm works correctly on individual signatures as well as aggregate signatures.
The security notion for an aggregate signature scheme was given by Boneh et al. [11] and in-

volves the game shown in Figure 1. An attacker A has advantage Pr[ExptUF
A (k) = 1]. An aggregate

signature scheme is UF-CMA secure if every PPT attacker A has negligible advantage.
Aggregate signature schemes are designed to improve the bandwidth/verification efficiency for

digital signatures that have to be verified by the same entity. For example, in the case where an
entity wishes to verify a signature using a public key that is supplied with a digital certificate.
The verifying entity has to verify the original signature and the signature on the certificate. If
both signatures are computed using the same aggregate signature scheme, then the two signatures
can be compressed into one aggregate signature which can be verified at the same time. However,
aggregate signature schemes only provide data integrity and data origin authentication, we aim
to provide a similar functionality but providing data confidentiality too.

ExptUF
A(k):

(pk , sk)
$← Gen(1k)

(pk ,m, σ)
$← AOS (pk)

Output 1 if
(a) Ver(pk ,m, σ) = >
(b) ∃ i such that pk (i) = pk and

m(i) was not queried to OS(m(i))
Else output 0

OS(m):

Return σ
$← Sign(sk ,m)

ExptIND-b
A (k):

(pk , sk)
$← Gen(1k)

(m0,m1, ω)
$← AOD

1 (pk)

C∗
$← Enc(pk ,mb)

If |m0| 6= |m1| then C∗ ← ⊥
b′

$← AOD
2 (C∗, ω)

Output b′

OD(C):
Return m← Dec(sk , C)

Fig. 1. The UF-CMA security model for aggregate signatures (LHS) and the IND-CCA2 security model
for public-key encryption (RHS). In the IND-CCA2 model, A2 is not allowed to submit a OD(C∗) query.

2.3 Public-Key Encryption

Since signcryption is often compared to public-key encryption, it is also useful to introduce that
notion here too. A public-key encryption scheme is a triple of PPT algorithms (Gen, Enc, Dec).

– The key-generation algorithm generates a public/private key pair (pk , sk)
$← Gen(1k). The

public key defines a (polynomial-time recognisable) message spaceM and a (polynomial-time
recognisable) ciphertext space C.

– The encryption algorithm takes a public key pk and a message m ∈M as input, and outputs

a ciphertext C
$← Enc(pk ,m).

– The decryption algorithm takes a private key sk and a ciphertext C ∈ C, and outputs a either
a message m← Dec(sk , C) or an invalid symbol ⊥.

We require that if C
$← Enc(pk ,m) then Dec(sk , C) = m.

The security model for public-key encryption was given in a series of papers [18, 25, 26]. It is
defined by the game shown in Figure 1. An attacker A = (A1,A2) has advantage

AdvIND
A (k) = |Pr[ExptIND-1

A (k) = 1]− Pr[ExptIND-0
A (k) = 1]| .

An encryption scheme is IND-CCA2 secure if every PPT attacker A has negligible advantage
(where A2 may not make a OD(C∗) query). We may also define a weaker notion of security known
as IND-RCCA security [13]. It is identical to the IND-CCA2 except if A2 submits an OD(C) query
with Dec(sk , C) ∈ {m0,m1} then the decryption oracle returns test. This notion of security has
been shown to be sufficient in situations where an attacker’s ability to replay messages is not
considered a breach of security.

2.4 Symmetric Encryption

A symmetric encryption is a pair of deterministic polynomial-time algorithms (Enc,Dec). The
encryption algorithm takes as input a key K of length k and a message m ∈ {0, 1}∗, and outputs
a ciphertext C ← EncK(m). The decryption algorithm takes as input a key K of length k and a
ciphertext C ∈ {0, 1}∗, and outputs either a message m ← DecK(C) or the error symbol ⊥. We
require that for all K ∈ {0, 1}k and m ∈ {0, 1}∗, we have that DecK(EncK(m)) = m.

The security model for symmetric encryption was developed in a series of papers [18, 4]. It is
defined by the game:

Exptsym-b
A (k):

K
$← {0, 1}k

(m0,m1, ω)
$← A1(1k)

C∗
$← EncK(mb)

If |m0| 6= |m1| then C∗ ← ⊥
b′

$← A2(C∗, ω)
Output b′

An attacker A = (A1,A2) has advantage

Adv
sym
A (k) = |Pr[Expt

sym-1
A (k) = 1]− Pr[Expt

sym-0
A (k) = 0]|

and the symmetric encryption scheme is said to be IND-CPA secure if every PPT attacker A has
negligible advantage.

2.5 Commitment Schemes

A commitment scheme is a triple of PPT algorithms (Setup, Commit, Open):

– The setup algorithm outputs public parameters param
$← Setup(1k).

– The commit algorithm takes as input the public parameters param and a message m, and

outputs a commitment/decommitment pair (c, d)
$← Commit(param,m).

– The open algorithm takes as input the public parameters param, the commitment c, and the
decommitment d; it outputs a message m← Open(param, c, d).

We require that if (c, d)
$← Commit(param,m) then m← Open(param, c, d).

We require two security properties from a commitment scheme [2]: hiding and relaxed binding.
For the hiding game, we consider an attacker A = (A1,A2) in the game in the LHS of Figure .The
attacker’s advantage is defined to be

Advhide
A (k) = |Pr[Expthid-1

A (k) = 1]− Pr[Expthid-0
A (k) = 1]|

and a scheme is said to be hiding if every PPT attacker has negligible advantage.

Expthid-b
A (k):

param
$← Setup(1k)

(m0,m1, ω)
$← A1(param)

(c, d)
$← Commit(param,mb)

If |m0| 6= |m1| then c← ⊥
b′

$← A2(c, ω)
Output b′

Exptbind
A (k):

param
$← Setup(1k)

(m,ω)
$← A1(param)

(c, d)
$← Commit(param,m)

d′
$← A2(c, d, ω)

m′ ← Open(param, c, d′)
Output 1 if m′ 6= m
Else output 0

Fig. 2. The security models for hiding (LHS) and binding (RHS) for commitment schemes.

For the relaxed binding game, we consider an attacker A = (A1,A2) playing the game on the
RHS of Figure 2. The attacker’s advantage is defined to be Pr[Exptbind

A = 1] and a scheme is said
to be relaxed binding if every PPT attacker has negligible advantage.

For technical reasons, we require that there exists at most one commitment c corresponding to
a decommitment d and that all messages m of the same length produce decommitments d of the
same length. This latter condition is used in proving the security of the CtE&S construction (see
Section A) but appears to be missing from the original analysis of this construction [2]. Both of
these conditions are trivially satisfied by all reasonable commitment schemes.

3 Aggregate Signcryption

An aggregate signcryption scheme is designed to have the same security properties as a signcryp-
tion scheme (i.e. confidentiality and integrity protection) but it allows for multiple signcryption
ciphertexts to be combined into a single signcryption ciphertext which communicates the same
information and has the same security properties, but consumes less bandwidth. Our security no-
tions combine those of signcryption [2, 3] with those of aggregate signatures [7, 11]. For technical
reasons, we will assume that the set of valid public keys is recognisable1 and every valid public
key has exactly one corresponding private key.

Our security models are very similar to those of [28] except with the obvious changes made for
the models to be applied in the public-key setting. One interesting pair of differences is that the
confidentiality model of Sharmilla et al. insists that the challenge ciphertext is an aggregate and
only forbids the attacker from submitting the challenge ciphertext to the decryption oracle; thus
implicitly prevent the scheme from allowing aggregating two aggregate ciphertexts. Technically
speaking, their model does not appear to guarantee the security of non-aggregate ciphertexts.

3.1 Syntax

In an aggregate signcryption scheme, we consider a situation where many senders wish to send a
number of different messages to a single recipient. An aggregate signcryption scheme is a tuple of
PPT algorithms (Setup, GenS , GenR, Signcrypt, Aggregate, Unsigncrypt):

– The setup algorithm outputs a set of public parameters param
$← Setup(1k). We will assume

that this is an implicit input to all other algorithms.

– The sender key generation algorithm outputs a sender key-pair (pkS , skS)
$← GenS(param).

– The receiver key generation algorithm outputs a receiver key-pair (pkR, skR)
$← GenR(param).

– The signcryption algorithm takes a sender private key, a receiver public key, and a message

m, and outputs a ciphertext C
$← Signcrypt(skS , pkR,m).

– The aggregation algorithm takes a vector of sender public keys pkS , a receiver public key pkR
and a vector of ciphertexts C, and outputs a single ciphertext C

$← Aggregate(pkS , pkR,C)
or the invalid symbol ⊥.

– The unsigncryption algorithm takes a vector of sender public keys pkS , a receiver private key
skR and a ciphertext C, and either a vector of messages m ← Unsigncrypt(pkS , skR, C) or
the invalid symbol ⊥.

We require that if C(i) $← Signcrypt(sk
(i)
S , pkR,m

(i)) for 1 ≤ i ≤ n and C
$← Aggregate(pkS , pkR,C),

then m← Unsigncrypt(pkS , pkR, C). We also assume that if C
$← Signcrypt(skS , pkR,m) then

Aggregate(pkS , pkR, C) = C. We stress that the aggregation algorithm only uses public informa-
tion to aggregate the signcryption ciphertexts.

3.2 Confidentiality

We will adapt the security definitions of confidentiality for a signcryption scheme [2, 3] to the
aggregate signcryption setting. We wish to forbid the attacker from submitting the ciphertext C∗

to the decryption oracle or any ciphertext can be obtained through aggregation with C∗. To do this,
we incorporate the ideas of [7, 16], and define the span of a ciphertext C sent from S to R to be

〈pk∗S , pk∗R, C
∗〉 = {(pkS , pk∗R, Aggregate(pkS , pk∗R,C)) : ∃ i with pk

(i)
S = pk∗S and C(i) = C∗} .

Let SPK (k) = {(pkS , skS)} be the set of all key pairs that could be output by GenS(1k). We define
several security models for (insider) confidentiality. These are both defined in Figure 3.

1 I.e. there exists a polynomial-time algorithm which can, given a bitstring θ ∈ {0, 1}∗, determine whether
θ is a public key that could be output by the sender or receiver key generation algorithm

ExptIND-b
A (k):

(pk∗R, sk
∗
R)

$← GenR(1k)

(m0,m1, pk
∗
S , sk

∗
S , ω)

$← AOU
1 (pk∗R)

C∗
$← Signcrypt(sk∗S , pk

∗
R,mb)

If (pk∗S , sk
∗
S) /∈ SPK(k) then C∗ ← ⊥

If |m0| 6= |m1| then C∗ ← ⊥
b′

$← AOU
2 (C∗, ω)

Output b′

OU (pkS , C):
Return Unsigncrypt(pkS , sk

∗
R, C)

ExptIND-b
A (k):

(pk∗R, sk
∗
R)

$← GenR(1k)

(m0,m1, pk
∗
S , ω)

$← AOU
1 (pk∗R)

Find sk∗S such that (pk∗S , sk
∗
S) ∈ SPK(k)

(If no such sk∗S exists then C∗ ← ⊥)

C∗
$← Signcrypt(sk∗S , pk

∗
R,mb)

If |m0| 6= |m1| then C∗ ← ⊥
b′

$← AOU
2 (C∗, ω)

Output b′

OU (pkS , C):
Return Unsigncrypt(pkS , sk

∗
R, C)

Fig. 3. The IND-CCA2 security model for confidentiality (LHS) and the SKI-IND-CCA2 security model
for confidentiality (RHS). In both cases, A2 is forbidden from submitting a OU query (pkS , C) where
(pkS , pk

∗
R, C) ∈ 〈pk∗S , pk∗R, C∗〉.

The difference between the IND-CCA2 security game and the secret-key ignorant SKI-IND-
CCA2 game is whether the attacker is required to output a complete sender key-pair, rather
than just the sender public key. The IND-CCA2 game models situations in which the process of
registering a public key requires the sender to prove knowledge of the private key; the SKI-IND-
CCA2 game models situations in which a sender can register any public key [14]. An attacker’s
advantage is defined to be

AdvIND
A (k) = |Pr[ExptIND-1

A (k) = 1]− Pr[ExptIND-0
A (k) = 1]|

and a signcryption scheme is said to be (SKI-)IND-CCA2 secure if every PPT attacker has negli-
gible advantage. Outsider security models can be developed in a similar way.

We may define weaker notions of confidentiality for signcryption schemes similar to the IND-
RCCA security notion for public-key encryption [13]. These (SKI-)IND-RCCA notions are defined
as above except that the OU oracle returns test whenever A2 submits a query (pkS , C) for which

there exists i with pk
(i)
S = pk∗S and m(i) ∈ {m0,m1} for m ← Unsigncrypt(pkS , sk∗R, C). This

models situations in which the ability to replay a message is not considered a threat to security.

3.3 Integrity

Integrity for aggregate signcryption can be extended from the notions of integrity protection for
aggregate signatures. Let RPK (k) = {(pkR, skR)} be the set of all key pairs that could be output
by GenR(1k). We define two security models for integrity in Figure 4. In both cases, the advantage
of an attacker A is given by Pr[ExptUF

A (k) = 1] and a scheme is said to be (SKI-)UF-CMA secure
if every PPT attacker A has negligible advantage.

We note that there are some dangers about using a scheme proven secure in the UF-CMA
security model: it may still have the property that an attacker can produce a ciphertext which is a
forgery from some sender S to some receiver R (but cannot compute R’s private decryption key).
The existence of such a ciphertext appears to imply that S sent some message to R, although the
exact nature of the message is unknown, which may be damaging to R’s reputation.

It is possible to describe a “strong” unforgeability model for aggregate signcryption by insisting
that the attacker forge an output (pkS , pk∗R, C

∗) where (pkS , pk∗R, C
∗) /∈ 〈(pk∗S , pk∗R, C)〉 for every

response C returned by an OU (pk∗R,m) query. It is unclear as to whether this definition has a
practical application and so we will not pursue it further in this work.

3.4 Denial of Decryption

Aggregation is designed to combine signcryption ciphertexts intended for a single receiver. The
basic syntax does not discuss what might happen if a user tries to aggregate signcryption ci-

ExptUF
A(k):

(pk∗S , sk
∗
S)

$← GenS(1k)

(pkS , pk
∗
R, sk

∗
R, C

∗)
$← AOS (pk∗S)

If (pk∗R, sk
∗
R) /∈ RPK (k) then output 0

m← Unsigncrypt(pkS , sk
∗
R, C

∗)
If m = ⊥ then output 0

If ∃ i such that pk
(i)
S = pk∗S and (pk∗R,m

(i))
was not queried to OS then output 1

Else output 0

OS(pkR,m):
Return Signcrypt(sk∗S , pkR,m)

ExptUF
A(k):

(pk∗S , sk
∗
S)

$← GenS(1k)

(pkS , pk
∗
R, C

∗)
$← AOS (pk∗S)

Find sk∗R such that (pk∗R, sk
∗
R) ∈ RPK (k)

(If no such sk∗R exists then output 0)
m← Unsigncrypt(pkS , sk

∗
R, C

∗)
If m = ⊥ then output 0

If ∃ i such that pk
(i)
S = pk∗S and (pk∗R,m

(i))
was not queried to OS then output 1

Else output 0

OS(pkR,m):
Return Signcrypt(sk∗S , pkR,m)

Fig. 4. The UF-CMA security model for aggregate signcryption (LHS) and the SKI-UF-CMA security
model for aggregate signcryption (RHS).

phertexts which are intended for different receivers or which are invalid. An attacker may inject
a false ciphertext into a batch of legitimate ciphertexts and cause the aggregation algorithm to
output an invalid aggregate ciphertext. This will prevent the receiver from receiving legitimate
messages. We term this a denial of decryption (DoD) attack after the similar effect that can occur
in certificateless cryptosystems [23]. To prevent DoD attacks, we may insist that the aggregation
algorithm refuse to aggregate invalid signcryption ciphertexts. Note that this attack can easily be
prevented in aggregate signature schemes by insisting that the aggregation algorithm check that
validity of all the individual signatures before computing the aggregate signature; however, most
signcryption schemes do not allow a third-party to check the validity of a signcryption ciphertext2.

In defining DoD security, we note that the aim of the attack is to prevent a legitimate receiver
from unsigncrypting an aggregate of signcryption ciphertexts. Hence, it is reasonable to assume
that the receiver is an uncorrupted entity; however, it is possible that the attacker is a legitimate
sender who wishes to interfere with the communication between other senders and the (honest)
receiver by injecting malicious ciphertexts into the aggregation process. Thus, we obtain the se-
curity model in Figure 5. An attacker A has advantage Pr[ExptDoD

A (k) = 1] and an aggregate
signcryption scheme is DoD-secure if every PPT attacker has negligible advantage.

ExptDoD
A (k):

(pk∗R, sk
∗
R)

$← GenR(1k)

(pkS ,C)
$← AOU (pk∗R)

For i = 1, . . . , n:

m(i) ← Unsigncrypt(pk
(i)
S , sk∗R, C

(i))

Ĉ
$← Aggregate(pkS , pkR,C)

If Ĉ = ⊥ then output 0

m̂← Unsigncrypt(pkS , sk
∗
R, Ĉ)

If m = m̂ then output 0
Else output 1

OU (pkS , C):
Return Unsigncrypt(pkS , sk

∗
R, C)

Fig. 5. The denial of decryption security model for aggregate signcryption.

Essentially, DoD-security states that if the aggregation algorithm does not output ⊥ then each
signcryption ciphertext is valid and that the unsigncryption of the aggregate ciphertext is the same
as the unsigncryption of the individual ciphertexts. One “simple” way to convert an aggregate

2 We note that this problem also occurs with history-free aggregate signatures/MACs [16].

signcryption scheme without DoD-security into a scheme with DoD-security is to append a NIZK
proof that the signcryption operation has been performed correctly using the public key pk∗R to the
ciphertext. This can always be achieved as NIZK proofs exist for all NP languages [17]; however,
in practice, these NIZK schemes are unusable and so it remains a challenge to construct practical
aggregate signcryption schemes with DoD security.

4 Generic Constructions

Of the four methods to generically combine public-key encryption and digital signatures, only two
are candidates for constructing secure aggregate signcryption schemes: encrypt-then-sign (EtS)
and commit-then-encrypt-and-sign (CtE&S)3. These constructions were first analysed for non-
aggregate signcryption schemes in the work of An, Dodis and Rabin [2]. In this section, we present
the EtS scheme. The CtE&S construction is discussed in Appendix A.

If (SigGen, Sign, SigAgg, Ver) is an aggregate signature scheme and (EncGen, Enc, Dec) is a
public key encryption scheme, then we may construct an EtS aggregate signcryption scheme is
given in Figure 6. This scheme does not make use of a Setup algorithm. Throughout this section,
we will assume that an entity X has a unique identity IDX and that there exists a mechanism to
link the public key of X to their identity IDX . This mechanism can be provided by a certificate
authority or may be implicit (e.g. if IDX = pkX).

GenS(1k):

(pkS , skS)
$← SigGen(1k)

Output (pkS , skS)

GenR(1k):

(pkR, skR)
$← EncGen(1k)

Output (pkR, skR)

Signcrypt(skS , pkR,m):
m′ ← (IDS ,m)

χ
$← Enc(pkR,m

′)
m′′ ← (IDR, χ)

σ
$← Sign(skS ,m

′′)
Output C ← (χ, σ)

Aggregate(pkR,C):

Parse C as ((χ(1), σ(1)), . . . , (χ(n), σ(n)))

σ
$← SigAgg(pkS ,σ)

Output (χ, σ)

Unsigncrypt(pkS , skR, C):
Parse C as (χ, σ)

m′′ ← ((IDR, χ
(1)), . . . , (IDR, χ

(n)))
If Ver(pkS ,m

′′, σ) = ⊥ then output ⊥
For 1 ≤ i ≤ n:

m′(i) ← Dec(skR, χ
(i))

Parse m′(i) as (ID
(i)
S ,m(i))

If pk
(i)
S is not the public key of ID

(i)
S then output ⊥

Output m

Fig. 6. The Encrypt-then-Sign Construction

Theorem 1. The following results hold:

1. If A is a PPT attacker against the insider SKI-UF-CMA unforgeability of the signcryption
scheme, then there exists a PPT attacker B against the UF-CMA unforgeability of the signature
scheme such that AdvUF

A (k) ≤ AdvUF
B (k).

2. If A is a PPT attacker against the IND-RCCA security of the signcryption scheme and the
set SKP(k) is polynomial-time recognisable, then there exists a PPT attacker B against the
IND-RCCA security of the encryption scheme such that AdvRCCA

A (k) ≤ AdvRCCA
B (k).

Surprisingly, despite the publicly verifiable signature, the construction does not provide any
defence against denial of decryption attacks. Even if the aggregation algorithm checks the validity
of the signature in each of the ciphertexts C(i), it will not necessarily be able to detect whether

3 Of the remaining two constructions, encrypt-and-sign (E&S) is insecure and sign-then-encrypt (StE) is
not suitable for aggregation.

each public-key ciphertext χ(i) is valid or whether the decryption contains the correct identity

ID
(i)
S . The construction does have the advantage that if the aggregation algorithm does check the

individual signatures, then the unsigncryption algorithm will only fail to unsigncrypt the messages
associated with invalid encryption ciphertexts. The receiver can still recover legitimate messages.
Thus, the attacker cannot deny the receiver information, but can artificially inflate the size of
aggregated ciphertext.

5 Direct Construction

One method for constructing a secure encryption scheme is to apply the CHK construction to an
identity-based encryption scheme [9, 20]. To fully encrypt a message, a signature key-pair (pk , sk)
is created for each ciphertext, the message is encrypted using the identity-based encryption scheme
with the signature public key pk as the identity. A signcryption scheme can be produced using an
EtS construction if the resulting encryption ciphertext is signed. It is clear that the bandwidth of
the EtS construction can be reduced if an aggregate signature scheme is used in both the CHK
construction and as the signature scheme. Furthermore, if the signature scheme allows for the
aggregation of aggregate signatures, then the result is an aggregate signcryption scheme.

We aim to improve efficiency by applying this methodology to the Boneh-Franklin identity-
based encryption scheme [10] and the BGLS aggregate signature scheme [11]. We are able to
improve efficiency by re-using an element generated as part of the identity-based encryption scheme
as the ephemeral signature public key in the CHK construction. The resulting scheme makes use
of a group G generated by an element g and a non-degenerate, bilinear map e : G2 → GT . The
scheme is given in Figure 7. The proof relies on the random oracle methodology.

GenS(1k):

xS
$← Zq

yS ← gxS

pkS ← yS ; skS ← xS
Output (pkS , skS)

GenR(1k):

xR
$← Zq

yR ← gxR

pkR ← yR; skR ← xR
Output (pkR, skR)

Aggregate(pkS , pkR,C):

Parse C(i) as (T (i), c(i), σ(i))

If T (i) = T (j) for i 6= j
Output ⊥

For i = 1, . . . , n:

P1 ← e(T (i), H1(T (i), c(i), ID
(i)
S))

P2 ← e(y
(i)
S , H2(T (i), c(i), IDR))

If e(g, σ(i)) 6= P1P2 then output ⊥
σ ←

∏n
i=1 σ

(i)

Output (T , c, σ)

Signcrypt(skS , pkR,m):

t
$← Zq; T ← gt

K ← HK(e(yR, Ht(T, IDS))t)
c← EncK(m)
σ ← H1(T, c, IDS)tH2(T, c, IDR)xS

C ← (T, c, σ)
Output C

Unsigncrypt(pkS , skR, C)
Parse C as (T , c, σ)

If T (i) = T (j) for i 6= j then output ⊥
P1 ←

∏n
i=1 e(T

(i), H1(T (i), c(i), ID
(i)
S))

P2 ←
∏n
i=1 e(y

(i)
S , H2(T (i), c(i), IDR))

If e(g, σ) 6= P1P2 then output ⊥
For i = 1, . . . , n:

K ← HK(e(T (i), Ht(T
(i), ID

(i)
S))xR)

m(i) ← DecK(c(i))

If m(i) =⊥ then output ⊥
Output m

Fig. 7. The Direct Construction

The scheme is secure if it is instantiated on a group G of order q (which depends on the security
parameter k) on which the CDH and BDH problems are hard. In other words, the following

advantages are negligible for every PPT attacker A:

AdvCDH
A (k) = Pr

[
A(ga, gb) = gab : a, b

$← Zq
]

AdvBDH
A (k) = Pr

[
A(ga, gb, gc) = e(g, g)abc : a, b, c

$← Zq
]

This construction is DoD secure (under reasonable assumptions about the action of the IND-
CPA symmetric encryption scheme). The only way that a ciphertext would fail to decrypt is if
σ does not satisfy the appropriate algebraic relation; however, this is publicly checkable and will
be checked by the aggregation algorithm. Therefore, the aggregation algorithm will refuse to form
aggregated ciphertexts which do not decrypt successfully. The scheme has the added advantage
that the aggregation algorithm can easily detect ciphertexts which will not aggregate correctly
– these are the invalid ciphertext (which can be publicly checked) and the ciphertexts which
share a common value of T . In the latter case, the entity performing aggregation can solve the
problem simply by forming multiple aggregate ciphertexts (ensuring that all aggregate ciphertexts
are constructed from ciphertext with different T values).

Theorem 2. Suppose the symmetric encryption scheme (Enc, Dec) has the property that for all
K ∈ {0, 1}k and C ∈ {0, 1}∗, we have that DecK(C) 6=⊥. Then the aggregate signcryption scheme
has perfect DoD security. In other words, for any (unbounded) attacker A against the DoD security
of the aggregate signcryption scheme, we have that Pr[ExptDoD

A = 1] = 0.

Proof : Let (pkS ,C) be such that Ĉ ← Aggregate(pkS , pk∗R,C) satisfies Ĉ 6=⊥. Since Ĉ 6=⊥ we
must have that every C(i) is computed using a different value of T (i) and that

e(g, σ(i)) = e(T (i), H1(T (i), c(i), ID
(i)
S)) · e(y(i)S , H2(T (i), c(i), IDR)) .

Thus, if we parse Ĉ as (T , c, σ̂), we have that

e(g, σ̂) =

n∏
i=1

e(T (i), H1(T (i), c(i), ID
(i)
S)) · e(y(i)S , H2(T (i), c(i), IDR)) .

Consider the message vectors Unsigncrypt(pkS , sk∗R, Ĉ) and Unsigncrypt(pkS , sk∗R,C) (where
the latter message vector is computed component-wise). In neither case will the unsigncryption
algorithm output ⊥. However, an inspection of the unsigncryption algorithm will show that all
later operations depends only on T , c, pkS and sk∗R. These values are identical in (pkS ,C) and
(pkS , Ĉ); hence, Unsigncrypt(pkS , sk∗R, Ĉ) = Unsigncrypt(pkS , sk∗R,C) and so there exist no
(pkS ,C) which could cause the attacker to win the DoD game. ut

The confidentiality/integrity security proof is more familiar.

Theorem 3. Let A be an attacker which makes at most qX queries to the hash oracle HX (for
X ∈ {1, 2, t,K}), qS queries to a signcryption oracle, and qU queries to the unsigncryption oracle.
Suppose G has prime order q. In the SKI-IND-CCA2 confidentiality model, there exists an algo-
rithm B to solve the CDH problem, an algorithm B′ to solve the BDH problem, and an attacker
B′′ against the IND-CPA security of the symmetric encryption scheme such that

AdvIND
A (k) ≤ 2AdvCDH

B (k) + 2(qK + qU)AdvBDH
B′ (k) + Advsym

B′′ (k) +
2(q1 + q2 + qt + qU)

q
.

In the SKI-UF-CMA unforgeability model, there exists an algorithm B to solve the CDH problem
such that

AdvUF
A (k) ≤ q2AdvCDH

B (k) +
qS(qS + q2) + 1

q
.

The following lemma will be useful:

Lemma 1. Suppose C∗ = (T ∗, c∗, σ∗) is a ciphertext computed using sender key pair (pk∗S , sk∗S)
and receiver key pair (pk∗R, sk∗R). If (pkS , pk∗R, C) satisfies Unsigncrypt(pkS , sk∗R, C) 6=⊥ and

there exists j such that (pk
(j)
S , T (j), c(j)) = (pk∗S , T

∗, c∗), then (pkS , pk∗R, C) ∈ 〈pk∗S , pk∗R, C
∗〉.

Proof : Since Unsigncrypt(pkS , pk∗R, C) 6=⊥, we must have

e(g, σ) =

n∏
i=1

e(g, σ(i))

where

e(g, σ(i)) = e(T (i), H1(T (i), c(i), ID
(i)
S)) · e(pk

(i)
S , H2(T (i), c(i), ID∗R)) .

So if we define C(i) = (T (i), c(i), σ(i)) then C = Aggregate(pkS , pk∗R,C). However, since e is a
bilinear map between prime order groups, there exists a unique value σ(j) such that

e(g, σ(j)) = e(T ∗, H1(T ∗, c∗, ID∗S)) · e(pk∗S , H2(T ∗, c∗, ID∗R))

and so we must have that σ(j) = σ∗. Therefore, (pkS , pk∗R, C) ∈ 〈pk∗S , pk∗R, C
∗〉. ut

Proof of Confidentiality: Let A = (A1,A2) be an attacker against the insider IND-CCA2
security of the signcryption scheme. We assume that starred variables are variables computed
during the creation of the challenge ciphertext. Let Sbi be the event that game Gbi outputs 1. Let
game Gb1 be the ExptIND-b

A (k) game. We prove our result through game hopping [5, 29].
Let Gb2 be identical to Gb1 except that the game outputs 0 if A1 queries the H1, H2, Ht or

unsigncryption oracle with T ∗ as one of the inputs. Since the attacker does not gain any information
about T ∗ until the challenge phase, the probability that this occurs is bounded by q1+q2+qt+qU/q.
Thus, |Pr[Sb2]− Pr[Sb1]| ≤ (q1 + q2 + qt + qU)/q.

Let Gb3 be the game in which the unsigncryption oracle returns ⊥ if A2 queries the unsigncryp-
tion oracle on a public-key vector yS and a ciphertext (T , c, σ) for which there exists i such that

T (i) = T ∗ and (y
(i)
S , c(i)) 6= (y∗S , c

∗). Suppose that the unsigncryption oracle on Gb3 returns ⊥ when
Gb2 would have returned some message vector m 6=⊥. Intuitively, this means that there has been
a forgery on the signature used in the CHK construction. We define an attacker B against the
CDH problem which breaks the scheme if A makes such a query. The attacker runs as in Figure 8
(where the hash oracles which are not directly defined return a random result when queried on a
new value and the attacker is assumed never to query the same hash value twice).

The crux of the proof is in the way in which the attacker B simulates the H1 and H2 oracles.
All H1 oracle queries that do not involve T ∗ are answered with a random group element gα. The
H1 query on (T ∗, c∗, ID∗S) is handled in the same way and this allows B to compute the challenge
ciphertext without knowing sk∗S . All H1 queries involving T ∗ are answered with a random group
element U∗α. All H2 oracle queries are answered with a random group element gβ . This allows
the simulation to answer all queries (pkS , C) for which T (i) 6= T ∗ for all i. If there exists i with

(T (i), pk
(i)
S , c(i)) = (T ∗, pk∗S , c

∗) then (pkS , pk∗R, C) ∈ 〈pk∗S , pk∗R, C
∗〉 by Lemma 1 which is an

illegal query.
If A submits a valid query (pkS , C) to the unsigncryption oracle for which there exists some

i such that T (i) = T ∗ but (pk
(i)
S , c(i)) 6= (pk∗S , c

∗) then this must be the only only value for which
T (i) = T ∗ (as otherwise the unsigncryption algorithm would return ⊥). Moreover, we must have
that

e(g, σ) =

n∏
j=1

e(T (j), H1(T (j), c(j), ID
(j)
S)) · e(y(j)S , H2(T (j), c(j), ID∗R))

which means, by the definition of the H1 and H2 oracle, that

σ = Zαiy
(i)βi

S

n∏
j=1,j 6=i

T (j)αjy
(j)βj

S

B(T ∗, U∗):

x∗R
$← Zq; y∗R ← gx

∗
R

Initiate lists H1-List and H2-List

(m0,m1, y
∗
S , ω)

$← AOU
1 (y∗R)

If A1 queries OU (pkS , C)

m
$← Unsigncrypt(yS , x

∗
R, C)

If ∃ (unique) i such that T (i) = T ∗

Output ⊥ and halt
Return m

If A1 queries OH1(T, c, IDS)
If T = T ∗ then output ⊥ and halt

α
$← Zq

Add (T, c, IDS , α) to H1-List
Return gα

If A1 queries OH2(T, c, IDR)
If T = T ∗ then output ⊥ and halt

β
$← Zq

Add (T, c, IDR, β) to H2-List

Return gβ

K∗ ← HK(e(T ∗, Ht(T
∗, IDS))x

∗
R)

c∗ ← EncK∗(mb)

α∗
$← Zq

Add (T ∗, c∗, ID∗S , α
∗) to H1-List

Compute H2(T ∗, c∗, ID∗R)
Find (T ∗, c∗, ID∗R, β

∗) on H2-List

σ∗ ← T ∗α
∗
y∗β
∗

S

C∗ ← (T ∗, c∗, σ∗)
(continued in next column)

b′
$← AOU

2 (C∗, ω)
If A1 queries OU (yS , C)
m← Unsigncrypt(yS , x

∗
R, C)

If m = ⊥ then return ⊥
Parse C as (T , c, σ)

If ∀ i we have T (i) 6= T ∗

Return m

Else ∃ unique i with T (i) = T ∗

Z ← {σ/y(i)βiS

∏n
j=1,j 6=i T

(j)αjy
(j)βj
S }1/αi where

(T (j), c(j), ID
(j)
S , αj) ∈ H1-List

(T (j), c(j), ID∗R, βj) ∈ H2-List
Output Z and halt

If A1 queries OH1(T, c, IDS)
If T 6= T ∗

α
$← Zq

Add (T, c, IDS , α) to H1-List
Return gα

Else

α
$← Zq

Add (T ∗, c, IDS , α) to H1-List
Return U∗α

If A1 queries OH2(T, c, IDR)

β
$← Zq

Add (T, c, IDR, β) to H2-List

Return gβ

Output ⊥

Fig. 8. The attacker B against the CDH problem. The hash oracles HK and Ht which are not directly
defined return a random result when queried on a new value. The attacker is assumed never to query a
hash oracle on the same value twice.

where Z is the solution to the CDH problem for (T ∗, U∗). Hence, B can solve the CDH problem
and so |Pr[Sb3]− Pr[Sb2]| ≤ AdvCDH

B (k).

Let Gb4 be the game in which outputs ⊥ if the attacker A makes a HK query on the value
e(y∗R, Ht(T

∗, ID∗S))t
∗

or if A makes an unsigncryption oracle query that would evaluate HK on
this value. We give an attacker B′ which solves the BDH problem with non-negligible probability
if A makes such a query. The attacker runs as in Figure 9. Note the important role being played
by the IND-CCA2 model here – the unsigncryption oracle can only correctly compute the key K

on ciphertexts which compute Ht(T
(i), ID

(i)
S) as gγ . However, if the ciphertext forces the unsign-

cryption oracle to compute Ht(T
∗, ID∗S) = U∗ then the unsigncryption oracle will fail. However,

this will only occur if there exists j such that (T (j), ID
(j)
S) = (T ∗, ID∗S) and by the conditions

imposed in Gb3 this cannot occur.

If an attacker queries a “forbidden” HK query (or causes the unsigncryption oracle to do so)
then the HK oracle will add an entry (X,K) to HK-List where X is the solution to the BDH
problem on (T ∗, U∗, Y ∗). The simulation may break down at this point, but this does not matter
since the solution to the problem we require is on HK-List at this point. Thus, if such a query
occurs, then B′ outputs the solution to the BDH problem with probability at least 1/(qU + qK).
Hence, |Pr[Sb3]− Pr[Sb4]| ≤ (qU + qK)AdvBDH

B′ (k).

B′(T ∗, U∗, Y ∗):
y∗R ← Y ∗

Initialise hash oracle lists

(m0,m1, y
∗
S , ω)

$← A1(y∗R)

K∗
$← {0, 1}k

c∗ ← EncK∗(mb)

α∗, β∗
$← Zq

Add (T ∗, c∗, ID∗S , α
∗) to H1-List

Add (T ∗, c∗, ID∗R, β
∗) to H2-List

σ∗ ← T ∗α
∗
y∗β
∗

S

C∗ ← (T ∗, c∗, σ∗)

b′
$← AOU

2 (C∗, ω)
Randomly choose an entry (X,K) ∈ HK-List
Output X

H1(T, c, ID):

α
$← Zq

Add (T, c, ID , α) to H1-List
Return gα

H2(T, c, ID):

β
$← Zq

Add (T, c, ID , β) to H2-List

Return gβ

Ht(T, ID):
If (T, ID) = (T ∗, ID∗S) then return U∗

Else

γ
$← Zq

Add (T, ID , γ) to Ht-List
Return gγ

HK(X):

K
$← {0, 1}k

Add (X,K) to HK-List
Return K

Unsigncrypt(yS , C):
Parse C as (T , c, σ)

If ∃ i such that T (i) = T ∗ then return ⊥
If T (i) = T (j) for some i 6= j then return ⊥
P1 ←

∏n
i=1 e(T

(i), H1(T (i), c(i), ID
(i)
S))

P2 ←
∏n
i=1 e(y

(i)
S , H2(T (i), c(i), ID∗R))

If e(g, σ) 6= P1 · P2 then return ⊥
For i = 1, . . . , n:

Compute Ht(T
(i), ID

(i)
S)

Find (T (i), ID
(i)
S , γ) on Ht-List

K ← HK(e(y∗R, T
(i))γ)

m(i) ← DecK(c(i))

If m(i) =⊥ then output ⊥
Return m

Fig. 9. The attacker B′ against the BDH problem. It is assumed that any oracle query made by the
attacker is answered by the appropriate given simulator. It is also assumed that the first stage attacker
A1 does not query the H1, H2, Ht or Unsigncrypt oracle on any value involving T ∗ and that the attacker
never queries an oracle on the same value twice.

However, this means that the key that is used to compute the challenge ciphertext isn’t used
for any other purpose in the game Gb4. We may therefore relate |Pr[S0

4]−Pr[S1
4]| to the difficulty of

breaking the symmetric encryption scheme. We give an attacker B′′ against the IND-CPA security
of the symmetric scheme in Figure 10. We have that |Pr[S0

4]− Pr[S1
4]| ≤ Advsym

B′′ (k).

B′′1 (1k):

x∗R
$← Zq; y∗R

$← Zq
(m0,m1, y

∗
S , ω)

$← A1(y∗R)
Output (m0,m1)

B′′2 (c∗):

t∗
$← Zq; T ∗ ← gt

∗

σ∗ ← H1(T ∗, c∗, ID∗S)t
∗
H2(T ∗, c, ID∗R)x

∗
S

C∗ ← (T ∗, c∗, σ∗)

b′
$← A2(C∗, ω)

Output b′

Fig. 10. The attacker B′′ against the IND-CPA security of the symmetric encryption scheme. If the
attacker queries any oracle, then the response is computed using an oracle with the correct distribution.
We assume that A1 never makes a H1, H2, Ht or Unsigncrypt query involving T ∗ (from Game 1), that A2

never makes a valid Unsigncrypt query involving T ∗ (from Game 2) and that A never makes a HK query
on the value e(y∗R, Ht(T

∗, ID∗S))t
∗

or makes an Unsigncrypt query that forces this query to be made.

Therefore, putting all the elements together we have that

AdvIND
A (k) ≤ 2(q1 + q2 + qt + qU)

q
+ 2AdvCDH

B (k) + 2(qK + qU)AdvBDH
B′ + Adv

sym
B′′ (k) .

This proves the aggregate signcryption scheme is confidential. ut

Proof of Unforgeability: The proof of insider unforgeability is much simpler. It essentially
relies on the fact that this is an encrypt-then-sign construction, albeit with certain components
aggregated. Suppose A is an SKI-UF-CMA attacker against the unforgeability of the aggregate
signcryption scheme. We describe an attacker B against the CDH problem in Figure 11.
B perfectly simulates the oracles for A unless the signcryption oracle fails (which causes B to

output ⊥ and halt). This will only occur if H2 is defined on a query involving T
$← G. This occurs

with probability at most qS(qS + q2)/q. If the simulation is correct and A outputs a valid forgery,

then B may output ⊥ if H1(T (i), c(i), ID
(i)
S) or H2(T (i), c(i), ID∗R) is not defined. However, in this

case, the probability that C is a valid forgery is at most 1/q since with probability 1− 1/q we will
have that σ is incorrect.

If these two events do not occur, and B outputs a valid forgery, then there must exist j′ such

that pk
(j′)
S = y∗S and (y∗R,m

(j′)) was never queried to the unsigncryption oracle. Furthermore, we
must have that H2(T (i), c(i), ID∗R) is defined. This cannot have been defined through a signcryption
query, as otherwise we would have that B has not output a valid forgery. Hence, we have that
(T (j′), c(j

′), ID∗R) was the j-th query to the H2 oracle with probability at least 1/q2. If this is the
case, then B solves the CDH problem. Therefore we have that

AdvUF
A (k) ≤ q2AdvCDH

B (k) +
qS(qS + q2) + 1

q
.

This proves that the aggregate signcryption scheme is unforgeable. ut

6 Signcryption in DDFD Systems

In this section, we investigate the efficiency of aggregate signcryption schemes in network systems
using a database system as an example. Obviously, aggregate signcryption has the potential to be
useful for securing data that needs to be transmitted with data confidentiality and data integrity
through a connectionless communication channel. We give a comparison of the bandwidth and
efficiency of a number of aggregate signcryption ciphertexts in Table 1 and Table 2 (including

B(Y ∗, U∗):
y∗S ← Y ∗

j
$← {1, . . . , q2}

(yS , y
∗
R, C

∗)
$← AOS (y∗S)

If A queries OU (yR,m)

t
$← Zq; T ← gt

K ← HK(e(yR, Ht(T, IDS))t)
c← EncK(m)
If H2(T, c, IDR) is defined

Output ⊥ and halt

β
$← Zq

Add (T, c, IDR,⊥, β) to H2-List

σ ← H1(T, c, ID∗S)ty∗βS
Return (T, c, σ)

If A queries H1(T, c, ID)

α
$← Zq

Add (T, c, ID , α) to H1-List
Return gα

If A queries H2(T, c, ID)
If this is not the j-th query

β
$← Zq

Add (T, c, ID , β) to H2-List

Return gβ

Else
Return U∗

If A queries Ht(T, ID)

γ
$← Zq

Add (T, ID , γ) to Ht-List
Return gγ

(continued in next column)

Parse C as (T , c, σ)

If T (i) = T (j) for some i 6= j then output ⊥ and halt

If ∃i such that H1(T (i), c(i), ID
(i)
S)

or H2(T (i), c(i), ID∗R) is not defined
then output ⊥ and halt

P1 ←
∏n
i=1 e(T

(i), H1(T (i), c(i), ID
(i)
S))

P2 ←
∏n
i=1 e(y

(i)
S , H2(T (i), c(i), ID∗R))

If e(g, σ) 6= P1P2 then output ⊥
For i = 1, . . . , n

Compute Ht(T
(i), ID

(i)
S)

Find (T (i), ID
(i)
S , γ) ∈ Ht-List

K ← HK(e(T (i), y∗R)γ)

m(i) ← DecK(c(i))

If m(i) =⊥ then output ⊥ and halt

Find j′ such that pk
(j′)
S = y∗S and (y∗R,m

(j′))
was not queried to OS . If no such query exists
then output ⊥

If (T (j′), c(j
′), ID∗R) not the j-th query to H2 oracle

Output ⊥ and halt
For i = 1, . . . , n

Find (T (i), c(i), ID
(i)
S , αi) ∈ H1-List

For i = 1, . . . , n and i 6= j

Find (T (i), c(i), ID∗R), βi) ∈ H2-List

Z1 ←
∏n
i=1 T

(i)αi

Z2 ←
∏n
i=1,i 6=j y

(i)βi
S

Output σ/Z1Z2

Fig. 11. The CDH attacker for the SKI-UF-CMA unforgeability of the aggregate signcryption scheme.
We assume that the HK oracle is simulated in the obvious way (by returning consistent random values).
We also assume that the H1, H2 and Ht oracles are consistent when queried with the same inputs twice
even if the hash function’s response has been defined by another oracle.

Table 1. Comparison of Bandwidth Use by Aggregate Signcryption Solutions

Name Confidentiality Unforgeability 1-overhead n-overhead DoD

ECIES + Schnorr insider IND-RCCA insider UF-SKI-CMA 4q + |MAC | 4nq + n|MAC | no

Zheng outsider IND-CCA2 insider UF-SKI-CMA 2q bits 2nq bits no

LQ1 insider IND-CCA2 insider UF-CMA 4q bits 4nq bits no

LQ2 insider IND-CCA2 insider UF-CMA 3q + 1 bits 3nq + n bits no

ECIES + BGLS insider IND-RCCA insider UF-SKI-CMA 4q + |MAC | 2nq + n|MAC |+ 2q no

Dent insider IND-SKI-CCA2 insider UF-SKI-CMA 4q 2q(n+ 1) yes

The term “n-overhead” refers to the amount of extra data that needs to be transmitted in an aggregate of
n signcryption ciphertexts. In other words, it is the length of the aggregate signcryption ciphertext minus
the lengths of the individual messages. The first “block” of the table consists of signcryption schemes
which “aggregate” their ciphertexts simply by presenting all the original ciphertexts as a sequence. The
second “block” of the table consists of “pure” aggregate signcryption schemes. For Diffie-Hellman-based
schemes we assume the scheme is implemented on a group G of order q in which group elements can be
represented using 2q bits (as is the case for elliptic curve groups). A typical value for q is 160-bits. We
assume that IND-CPA symmetric encryption does not incur any overhead. We assume a MAC algorithm
that produces MAC tags of size |MAC | (e.g. |MAC | = 80). The ECIES+Schnorr scheme is the trivial
signcryption scheme formed by combining the ECIES encryption scheme [1] and the Schnorr signature
scheme [27]. Zheng’s signcryption scheme is given in [30]. The LQ1 and LQ2 signcryption schemes were
given by Libert and Quisquater and are described in [21] and [22] respectively. The ECIES+BGLS scheme
is the aggregate signcryption scheme formed by combining the ECIES encryption scheme [1] and the BGLS
aggregate signature scheme [11] using the method in Section 4. The Dent aggregate signcryption scheme
is the direct construction given in Section 5. All schemes are proven secure in the random oracle model.

Table 2. Comparison of Efficiency of Aggregate Signcryption Schemes

Name Signcryption (n,m)-Aggregation n-Unsigncryption
(Operations) (Operations) (Operations)

ECIES + Schnorr 3 exp trivial 3n exp∗

Zheng 1 exp trivial 3n exp∗

LQ1 3 exp trivial n exp/2n pair

LQ2 2 exp trivial 2n exp/2n pair

ECIES + BGLS 3 exp † n exp/n+ 1 pair

Dent 4 exp/1 pair 3n pair n exp/n+ 3 pair

The efficiency of the same schemes as in Table 1 expressed as the number of exponentiations and pairing
operations required (since these are the dominant operations). The (n,m)-aggregation cost refers to the
cost of aggregating n signcryption ciphertexts that already contain m messages. The n-unsigncryption cost
refers to the cost of decryption of a signcryption ciphertext containing n messages. ∗ serves to remind the
reader that these schemes do not need to be implemented on pairing friendly elliptic curves and so may
be faster than the equivalent operation for other schemes. † denotes that the operation requires either a
number of multiplications or 2n pairings, depending on whether the intermediate nodes verify the BGLS
signatures before passing on the aggregate ciphertext or not. If the scheme verifies the BGLS signatures,
then a weak form of DoD security can be achieved.

a comparison with a number of traditional signcryption schemes where “aggregation” occurs by
trivially combining all the ciphertexts into one sequence).

It is interesting to note that the optimal choice of aggregate signcryption scheme depends
on the security needs of the application. If the application only requires outsider confidentiality,
then a näıve use of Zheng’s signcryption scheme is the most efficient (where “aggregation” occurs
by concatenating the individual ciphertexts without any attempt to combine them). If insider
confidentiality is required and the majority of communication is not likely to require aggregation,
then the LQ2 scheme (with näıve aggregation) is most efficient. However, the Dent scheme of
Section 5 becomes more efficient in any situation where two or more ciphertexts need to be
aggregated.

To illustrate this point more fully, we give an example of an implementation of aggregate sign-
cryption securing communication in a dynamic, distributed, federated database (DDFD) system.
We use the Gaian database [6] as our example as this system requires a large number of secure
connectionless communications.

6.1 The Gaian Database System

The Gaian database is a distributed database in which data is held by nodes in a “logical graph”
[6]. The system is federated in the sense that it uses a store-local-query-anywhere (SLQA) structure
which allows requests for data not held in the local database to be obtained from remote nodes.
The physical network on which the database graph is implemented is assumed to be dynamic and
lacking any pre-specified structure. Since the structure of the logical and physical graphs cannot be
assumed, a database node in the logical graph performs a query operation by flooding the network
with requests for data and collating the results. All database nodes are required to respond to
requests for information even if the database does not hold any relevant data.

The novel approach of the Gaian database system is in how the logical graph “grows” with the
addition of new nodes. The system uses a preferential attachment system whereby a new node is
linked to m existing nodes in the graph through the use of a preferential attachment rule that is
designed to give rise to a logical graph that shares similar properties to a scale-free graph [8]; most
notably the small diameter that is associated with scale free graphs. A small diameter implies
that the “query flood” operation is relatively efficient. The basic operation of the preferential
attachment system means that a new database node u links to the first m nodes that return
a “connection message”. Each existing node v with degree less than vmax sends a connection
message after a delay of t seconds where t is randomly chosen in the range [0, t0F (v)], t0 is an
implementation-defined constant and F is the “fitness function”. Proposed fitness functions include
F (v) = 1/deg(v) [6] and F (v) = d(u, v)/deg(v) where d(u, v) is the distance (in hops) between u
and v in the physical network [12]. The constant vmax is meant to stop the logical graph containing
nodes which are “too critical” and which could be the target for denial of service attacks.

6.2 Security Requirements

The Gaian system is designed to be used in situations which include data retrieval by palm-top
devices through wireless communication in active military conflict scenarios; hence, communication
between nodes may be subject to eavesdropping and data manipulation attacks4. Furthermore, one
must consider the possibility that these devices will fall into malicious hands, which corresponds
to the existence of malicious nodes in the logical graph. With regards to efficiency, it is generally
accepted that processing power and storage capacity is increasing faster than communications
capacity in these scenarios and that communication solutions should concentrate on achieving
high bandwidth efficiency [19].

We believe that aggregate signcryption is a natural candidate for fulfilling these security re-
quirements:

4 Jamming attacks are also a distinct possibility; however, the provision of an availability service is not
the purpose of this paper and so we will ignore this threat.

– Structure-free: The aggregate signcryption scheme only assumes that nodes have asymmetric
key-pairs and authentic copies of the public keys of other nodes. This can easily be guaranteed
at the point of manufacture or service. No implicit network structure has to be assumed.

– Confidentiality: Aggregate signcryption provides confidential message transmission. Owing
to the possibility of device compromise and the strong confidentiality requirements that may
exist for the data, forward secrecy is an important requirement for the signcryption scheme
and hence the use of an insider-secure IND-CCA2 signcryption scheme is recommended.

– Integrity Protection/Origin Authentication: Aggregate signcryption provides data ori-
gin authentication and integrity protection. Again, owing to the possibility of device compro-
mise, insider UF-CMA security would be recommended. Of course, aggregate signcryption does
not automatically provide freshness guarantees; however, these could be built into the query
request/response protocol through the use of nonces – see (e.g.) key establishment protocols
from signcryption schemes [14].

– DoD Security: While not explicitly a requirement for the communication system, DoD se-
curity may provide a useful service. The DoD security guarantee ensures that a compromised
node cannot create a signcryption ciphertext that will be correctly aggregated, but will corrupt
the data provided by other nodes. In other words, compromising a node allows an attacker to
send malicious data from that node, but does not give the attacker the ability to prevent the
legitimate data from other nodes from being received5.

Moreover, aggregate signcryption aims to provide these services whilst consuming the minimum
amount of bandwidth.

6.3 Efficiency Comparison

Aggregate signcryption has the potential to improve bandwidth efficiency for nodes who are re-
sponding to “flood” requests for data. The requests themselves cannot be compressed as they are
intended for different recipients. The most obvious candidates for securing the messaging func-
tion in the Gaian database are the LQ2 signcryption scheme and the Dent aggregate signcryption
scheme. (Zheng’s signcryption scheme only provides outsider security and so does not meet the
security requirements of the application.)

We modelled the communication requirements for the data responses using a computer sim-
ulation. The simulation generated 1000 Gaian logical networks6 each consisting of n nodes and
computed the communication overhead for each node to receive data from every other nodes in
the network using each of the different aggregate signcryption schemes in Table 1. Nodes were
numerically labelled in the order in which they joined the network and if two equal-length paths
existed to transmit the data, then the data was passed to nodes with lower node labels in prefer-
ence to nodes with higher node labels. Each new node formed m = 2 attachments using the fitness
function F (u) = 1/ deg(u) and no “cap” vmax was placed on the number of attachments a node
could make.

The average communication overhead for each communication type is shown in Figure 12 with
number of nodes along the x-axis and communication overhead in bits along the y-axis. With
the exception of the Zheng signcryption scheme (which does not have sufficient security for this
application) the direct construction of Section 5 achieves clear bandwidth savings of up to 43%
against a naive combination of ECIES encryption and Schnorr signatures and of 14% against the
next best scheme (the LQ2 algorithm).

Although it is not obvious from the graph, there is an interesting interplay between efficiency
of the Dent construction and the LQ2 scheme. For networks with fewer nodes, the LQ2 scheme is
more efficient. The new scheme becomes more efficient in networks with more than 60 nodes. This
is because networks with fewer nodes are likely to form simple networks with lots of nodes that

5 This guarantee, of course, only applies at an algorithmic level. The compromised node may still prevent
legitimate data from being received by, for example, blocking the communication channel.

6 Since the logical network must be embedded in the physical network, it serves as a “minimum” descrip-
tion of the network over which data will be passed.

Fig. 12. Communication Overhead of Signcryption Schemes in the Gaian Database

are only one edge away from each other. This means that there will be a lot of ciphertexts which
only contain a single message and the LQ2 scheme is more efficient in this situation.

This also explains the LQ2 scheme is more bandwidth efficient than the new scheme when
considering the overhead required to send data to the “best” node in the graph (i.e. the node
that requires the least overhead). This node is likely to be central in the graph and the graph is
likely to resemble a “star” network. The LQ2 scheme is likely to be more efficient in this case. In
contrast, the new scheme is significantly more efficient when we consider the overhead required to
send data to the “worst” node in the graph (i.e. the node that requires the most overhead).

Lastly, we recall that we have only considered the bandwidth cost for a node to receive data.
It may be thought that the advantages of using the new scheme disappear when considering the
need to both send requests for data and receive responses, since no aggregation can occur when
sending requests for data. However, we note that bandwidth savings may still be achieved and (as
a worst-case solution) we may use different algorithms to send requests and to receive responses.
For example, we may use LQ2 to send requests for data and the new scheme to receive responses.
The “code cost” of using two algorithms may be reasonable if the bandwidth saving is sufficiently
large.

7 Acknowledgements

I would like to acknowledge and thank Greg Neven for some initial discussions about the feasibility
of aggregate signcryption. This paper has been the product of lethargic work for a period of at
least four years and I would like to acknowledge the various institutions with whom I have worked
during this time. I would like to thank the Information Security Group at Royal Holloway for giving
my a position in the department for ten years and I would like to thank the Computer Science
Department at City University of New York for allowing me to visit on numerous occasions.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumption and an analysis of
DHIES. In D. Naccache, editor, Topics in Cryptology – CT-RSA 2001, volume 2020 of Lecture Notes
in Computer Science, pages 143–158. Springer-Verlag, 2001.

2. J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In L. Knudsen,
editor, Advance in Cryptology – Eurocrypt 2002, volume 2332 of Lecture Notes in Computer Science,
pages 83–107. Springer-Verlag, 2002.

3. J. Baek, R. Steinfeld, and Y. Zheng. Formal proofs for the security of signcryption. Journal of
Cryptology, 20(2):203–235, 2007.

4. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryp-
tion. In Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE, 1997.

5. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge
protocols. In M. Franklin, editor, Advances in Cryptology – Crypto 2004, volume 3152 of Lecture
Notes in Computer Science, pages 273–289. Springer-Verlag, 2004.

6. G. Bent, P. Dantressangle, D. Vyvyan, A. Mowshowitz, and V. Mitsou. A dynamic distributed
federtaed database. In Proc. Second Annual Conference of the ITA, 2008.

7. A. Boldyreva, C. Gentry, A. O’Neill, and D. H. Yum. Ordered multisignatures and identity-based
sequential aggregate signatures, with applications to secure routing. In ACM Conference on Computer
and Communications Security – ACM CCS ’07, pages 276–285. ACM Press, 2007.

8. B. Bollobas and O. Riordan. The diameter of a scale free random graph. Combinatorika, 24(1):5–34,
2004.

9. D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryp-
tion. SIAM Journal on Computing, 36(5):1301–1328, 2007.

10. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In J. Kilian, editor,
Advances in Cryptology – Crypto 2001, volume 2139 of Lecture Notes in Computer Science, pages
213–229. Springer-Verlag, 2001.

11. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from
bilinear maps. In E. Biham, editor, Advances in Cryptology – Eurocrypt 2003, volume 2656 of Lecture
Notes in Computer Science, pages 416–432. Springer-Verlag, 2003.

12. E. Bulut and B. K. Szymanski. On alignment of physical and logical network in GaianDB network.
Rensselaer Polytechnic Institute, Dept. of Computer Science, Report CS-11-10, 2010.

13. R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In D. Boneh, editor,
Advances in Cryptology – Crypto 2003, volume 2729 of Lecture Notes in Computer Science, pages
565–582. Springer-Verlag, 2003.

14. A. W. Dent and Y. Zheng, editors. Practical Signcryption. Springer-Verlag, 2010.
15. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information

Theory, 22:644–654, 1976.
16. O. Eikemeier, M. Fischlin, J.-F. Götzmann, A. Lehmann, D. Schröder, P. Schröder, and D. Wagner.

History-free aggregate message authentication codes. In J. Garay and R. De Prisco, editors, Security
in Communication Networks – SCN 2010, volume 6280 of Lecture Notes in Computer Science, pages
309–328. Springer-Verlag, 2010.

17. U. Feige, D. Lapidot, and A. Shamir. Multiple noninteractive zero knowledge proofs under general
assumptions. SAIM Journal on Computing, 29(1):1–28, 1999.

18. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Science,
28:270–299, 1984.

19. International Technical Alliance (ITA). BPP11 Technical Areas. 2010.
20. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi and T. Rabin, editors,

Theory of Cryptography – TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages
581–600. Springer-Verlag, 2006.

21. B. Libert and J.-J. Quisquater. Efficient signcryption with key privacy from gap Diffie-Hellman groups.
In F. Bao, editor, Public Key Cryptography – PKC 2004, volume 2947 of Lecture Notes in Computer
Science, pages 187–200. Springer-Verlag, 2004.

22. B. Libert and J.-J. Quisquater. Improved signcryption from q-Diffe-Hellman problems. In C. Blundo
and S. Cimato, editors, Security in Communication Networks – SCN 2004, volume 3352 of Lecture
Notes in Computer Science, pages 220–234. Springer-Verlag, 2004.

23. J. K. Liu, M. H. Au, and W. Susilo. Self-generated-certificate public key cryptography and certificate-
less signature/encryption scheme in the standard model. In Proc. ACM Symposium on Information,
Computer and Communications Security. ACM Press, 2007.

24. H. Lu and Q. Xie. An efficient certificaless aggregate signcryption scheme. In International Conference
on Electronics, Communications and Control, pages 132–135. IEEE Press, 2011.

25. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In Proc. 22nd ACM Symposium on the Theory of Computing – STOC ’90, pages 427–437. ACM Press,
1990.

26. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext
attack. In J. Feigenbaum, editor, Advances in Cryptology – Crypto ’91, volume 576 of Lecture Notes
in Computer Science, pages 434–444. Springer-Verlag, 1991.

27. C. P. Schnorr. Efficient signature generation for smart cards. Journal of Cryptology, 4(3):161–174,
1991.

28. S. Sharmilla Deva Selvi, S. Sree Vivek, J. Shiriam, S. Kalaivani, and C. Pandu Rangan. Identity
based aggregate signcryption schemes. In B. Roy and N. Sendrier, editors, Progress in Cryptology –

Indocrypt 2009, volume 5922 of Lecture Notes in Computer Science, pages 378–397. Springer-Verlag,
2009.

29. V. Shoup. Sequences of games: A tool for taming complexity in security proofs. Available from
http://eprint.iacr.org/2004/332/, 2004.

30. Y. Zheng. Digital signcryption or how to achieve cost(signature & encryption) � cost(signature) +
cost(encryption). In B. Kaliski, editor, Advances in Cryptology – Crypto ’97, volume 1294 of Lecture
Notes in Computer Science, pages 165–179. Springer-Verlag, 1997.

A Commit-then-Encrypt-and-Sign

If (ComSetup, Commit, Open) is a commitment scheme, (SigGen, Sign, Aggregate, Ver) is an aggre-
gate signature scheme, and (EncGen, Enc, Dec) is a public-key encryption scheme, then we may
construct a CtE&S aggregate signcryption scheme as in Figure 13. This scheme is attractive since
the encryption and signature algorithms can be run in parallel in both signcryption and unsign-
cryption.

Setup(1k):

param
$← ComSetup(1k)

Output param

GenS(1k):

(pkS , skS)
$← SigGen(1k)

Output (pkS , skS)

GenR(1k):

(pkR, skR)
$← EncGen(1k)

Output (pkR, skR)

Aggregate(pkS , pkR,C):

Parse C as ((c(1), χ(1), σ(1)), . . . , (c(n), χ(n), σ(n)))

σ
$← SigAgg(pkS ,σ)

Output (c,χ, σ)

Signcrypt(skS , pkR,m):

(c, d)
$← Commit(param,m)

m′ ← (IDS , d)
χ← Enc(pkR,m

′)
m′′ ← (IDR, c)

σ
$← Sign(skS ,m

′′)
Output C ← (c, χ, σ)

Unsigncrypt(pkS , skR, C):
Parse C as (c,χ, σ)

m′′ ← ((IDR, c
(1)), . . . , (IDR, c

(n)))
If Ver(pkS ,m

′′, σ) = ⊥ then output ⊥
For 1 ≤ i ≤ n:

m′(i) ← Dec(skR, χ
(i))

Parse m′(i) as (ID
(i)
S , d(i))

If pk
(i)
S is not the public key of ID

(i)
S then output ⊥

m(i) ← Open(param, c(i), d(i))

If m(i) = ⊥ then output ⊥
Output m

Fig. 13. The Commit-then-Encrypt-and-Sign Construction

Theorem 4. The following results hold:

1. If A is a PPT attacker against the UF-CMA unforgeability of the signcryption scheme that
makes at most qs queries to the signcryption oracle, then there exists a PPT attacker B against
the UF-CMA unforgeability of the signature scheme and a PPT attacker B′ against the relaxed
binding property of the commitment scheme such that AdvUF

A (k) ≤ AdvUF
B (k) + qsAdvBind

B′ (k).
2. If A is a PPT attacker against the IND-RCCA security of the signcryption scheme and the

set SPK (k) is polynomial-time recognisable, then there exists a PPT attacker B against the
IND-CCA2 security of the public-key encryption scheme and a PPT attacker B′ against the
hiding property of the commitment scheme such that AdvRCCA

A (k) ≤ 2AdvCCA
B (k) + AdvHide

B′ (k).

Again, since we cannot determine whether an encryption χ is valid or not, this construction
does not give DoD security.

B Security Proofs for Generic Constructions

B.1 Encrypt-then-Sign

Let us re-cap the definition of the EtS construction. If (SigGen, Sign, SigAgg, Ver) is an aggregate
signature scheme and (EncGen, Enc, Dec) is a public key encryption scheme, then we may construct
an EtS aggregate signcryption scheme is given below. This scheme does not make use of a Setup

algorithm.

GenS(1k):

(pkS , skS)
$← SigGen(1k)

Output (pkS , skS)

GenR(1k):

(pkR, skR)
$← EncGen(1k)

Output (pkR, skR)

Signcrypt(skS , pkR,m):
m′ ← (IDS ,m)

χ
$← Enc(pkR,m

′)
m′′ ← (IDR, χ)

σ
$← Sign(skS ,m

′′)
Output C ← (χ, σ)

Aggregate(pkR,C):

Parse C as ((χ(1), σ(1)), . . . , (χ(n), σ(n)))

σ
$← SigAgg(pkS ,σ)

Output (χ, σ)

Unsigncrypt(pkS , skR, C):
Parse C as (χ, σ)

m′′ ← ((IDR, χ
(1)), . . . , (IDR, χ

(n)))
If Ver(pkS ,m

′′, σ) = ⊥ then output ⊥
For 1 ≤ i ≤ n:

m′(i) ← Dec(skR, χ
(i))

Parse m′(i) as (ID
(i)
S ,m(i))

If pk
(i)
S is not the public key of ID

(i)
S then output ⊥

Output m

Theorem 1. The following results hold:

1. If A is a PPT attacker against the insider SKI-UF-CMA unforgeability of the signcryption
scheme, then there exists a PPT attacker B against the UF-CMA unforgeability of the signature
scheme such that AdvUF

A (k) ≤ AdvUF
B (k).

2. If A is a PPT attacker against the IND-RCCA security of the signcryption scheme and the
set SKP(k) is polynomial-time recognisable, then there exists a PPT attacker B against the
IND-RCCA security of the encryption scheme such that AdvRCCA

A (k) ≤ AdvRCCA
B (k).

Proof We begin with the unforgeability game and directly describe the attacker B. We assume
that ID∗S is the identity of the entity with public key pk∗S (and similar for ID∗R and pk∗R)). B
proceeds as follows:

BO′S (pk∗): . O′S is the aggregate signature oracle
pk∗S ← pk∗

(pkS , pk∗R, C
∗)

$← AOS (pk∗S) . OS is the aggregate signcryption oracle
If A queries OS(pkR,m)
m′ ← (ID∗S ,m)

c
$← Enc(pkR,m

′)
m′′ ← (IDR, c)
Query σ ← O′S(m′′)
Return (c, σ)

Parse C∗ as (c, σ∗)
m∗ ← ((ID∗R, c

(1)), . . . , (ID∗R, c
(n)))

Output (pkS ,m
∗, σ∗)

If A wins the insider unforgeability game, then we have that (1) pk∗R is a valid receiver key pair

(with corresponding private key sk∗R); (2) Ver(pkS ,m
∗, σ∗) = >; (3) Dec(sk∗R, c

(i)) = (ID
(i)
S ,m(i))

for some m(i) and all 1 ≤ i ≤ n; and (4) there exists i∗ such that pk
(i∗)
S = pk∗ and (pk∗R,m

(i∗))
was never queried to the signcryption oracle.

Since σ∗ is a valid signature, B wins the unforgeability game provided that there exists i such

that pk
(i)
S = pk∗ and the signature oracle was never queried on (ID∗R, c

(i)). We claim that this is

satisfied when i = i∗. It certainly true that pk
(i∗)
S = pk∗ and, since ID∗R uniquely identifies the

public key pk∗R, we have that the only way that B would possibly query the signature oracle on
(ID∗R, c

(i∗)) is if A queried the signcryption oracle on (pk∗R,m
(i∗)), which was disallowed. Hence,

B breaks the signature scheme whenever A breaks the signcryption scheme.
For confidentiality, we again directly construct an attacker B = (B1,B2). For simplicity we

will suppress the state information variable ω and simply assume that all necessary information
is passed between attackers. B runs as follows:

BOD
1 (pk∗):
pk∗R ← pk∗

(m0,m1, pk∗S , sk∗S)
$← AOU

1 (pk∗R)
m′i ← (ID∗S ,mi) for i ∈ {0, 1}
Output (m′0,m

′
1)

BOD
2 (c∗):
m′′ ← (ID∗R, c

∗)

σ∗
$← Sign(sk∗S ,m

′′)
C∗ ← (c∗, σ∗)
If |m0| 6= |m1| then C∗ ← ⊥
If (pk∗S , sk∗S) /∈ SPK (k) then C∗ ← ⊥
b′

$← AOU
2 (C∗)

Output b′

OU (pkS , C):
Parse C as (c, σ)
m′′ ← ((IDR, c

(1)), . . . , (IDR, c
(n)))

If Ver(pkS ,m
′′, σ) = ⊥ then return ⊥

For 1 ≤ i ≤ n:
Query m′(i) ← OD(c(i))
If m′(i) = test

If pk
(i)
S = pk∗S then return test

Else return ⊥
Parse m′(i) as (ID

(i)
S ,m(i))

If pk
(i)
S is not the public key of ID

(i)
S

Return ⊥
Return m

B wins if A correctly identifies the bit b and B correctly simulates all of the oracles to which A
has access. The challenge signcryption ciphertext is clearly constructed correctly. The OU oracle
clearly returns the correct result in all situations except perhaps if the decryption oracle OD
returns test. In this situation, the decryption of c(i) is either (ID∗S ,m0) or (ID∗S ,m1). Thus,

if pk
(i)
S 6= pk∗S then the OU oracle correctly returns ⊥. If pk

(i)
S = pk∗S then the signcryption

algorithm would return m(i) ∈ {m0,m1} and so the OU oracle correctly returns test. Hence,
AdvRCCA

A (k) = AdvRCCA
B (k). ut

B.2 Commit-then-Encrypt-and-Sign

Let us recap the CtE&S scheme. If (ComSetup, Commit, Open) is a commitment scheme, (SigGen,
Sign, Aggregate, Ver) is an aggregate signature scheme, and (EncGen, Enc, Dec) is a public-key
encryption scheme, then we may construct a CtE&S aggregate signcryption scheme as below

Setup(1k):

param
$← ComSetup(1k)

Output param

GenS(1k):

(pkS , skS)
$← SigGen(1k)

Output (pkS , skS)

GenR(1k):

(pkR, skR)
$← EncGen(1k)

Output (pkR, skR)

Aggregate(pkS , pkR,C):

Parse C as ((c(1), χ(1), σ(1)), . . . , (c(n), χ(n), σ(n)))

σ
$← SigAgg(pkS ,σ)

Output (c,χ, σ)

Signcrypt(skS , pkR,m):

(c, d)
$← Commit(param,m)

m′ ← (IDS , d)
χ← Enc(pkR,m

′)
m′′ ← (IDR, c)

σ
$← Sign(skS ,m

′′)
Output C ← (c, χ, σ)

Unsigncrypt(pkS , skR, C):
Parse C as (c,χ, σ)

m′′ ← ((IDR, c
(1)), . . . , (IDR, c

(n)))
If Ver(pkS ,m

′′, σ) = ⊥ then output ⊥
For 1 ≤ i ≤ n:

m′(i) ← Dec(skR, χ
(i))

Parse m′(i) as (ID
(i)
S , d(i))

If pk
(i)
S is not the public key of ID

(i)
S then output ⊥

m(i) ← Open(param, c(i), d(i))

If m(i) = ⊥ then output ⊥
Output m

Theorem 2. The following results hold:

1. If A is a PPT attacker against the UF-CMA unforgeability of the signcryption scheme that
makes at most qs queries to the signcryption oracle, then there exists a PPT attacker B against
the UF-CMA unforgeability of the signature scheme and a PPT attacker B′ against the relaxed
binding property of the commitment scheme such that AdvUF

A (k) ≤ AdvUF
B (k) + qsAdvBind

B′ (k).
2. If A is a PPT attacker against the IND-RCCA security of the signcryption scheme and the

set SPK (k) is polynomial-time recognisable, then there exists a PPT attacker B against the
IND-CCA2 security of the public-key encryption scheme and a PPT attacker B′ against the
hiding property of the commitment scheme such that AdvRCCA

A (k) ≤ 2AdvCCA
B (k) + AdvHide

B′ (k).

Proof We will start with the integrity property. The principle is simple: if A produces a forged
ciphertext, then it must either produce a signature on a new value c (in which case we can break
the unforgeability of the signature scheme) or it must produce a new decommitment d (in which
case we can break the binding property of the signature scheme). We describe the attackers B and
B′ directly. B is an attacker against the UF-CMA security of the signature scheme and runs as
follows:

BO′S (pk∗): . O′S is the aggregate signature oracle

param
$← Setup(1k)

pk∗S ← pk∗

(pkS , pk∗R, sk∗R, C)
$← AOS (param, pk∗S) . OS is the aggregate signcryption oracle

If A queries OS(pkR,m)

(c, d)
$← Commit(param,m)

m′ ← (ID∗S , d); m′′ ← (IDR, c)

χ
$← Enc(pkR,m

′)
Query σ ← O′S(m′′)
Return (χ, c, σ)

Parse C as (χ, c, σ∗)
m∗ ← ((ID∗R, c

(1)), . . . , (ID∗R, c
(n)))

Output (pkS ,m
∗, σ∗)

B′ is an attacker against the binding property of the commitment scheme. We assume that
the algorithms pass sufficient state between their parts to run without requiring it to be explicitly
written. B′ runs as follows:

B′1(param):

j ← 1; j∗
$← {1, . . . , qs}

(pk∗S , sk∗S)
$← SigGen(1k)

(pkS , pk∗R, sk∗R, C
∗)

$← AOS (param, pk∗S)
If A queries OS(pkR,m)

If j 6= j∗

j = j + 1

(c, d)
$← Commit(param,m)

m′ ← (ID∗S , d); m′′ ← (IDR, c)

χ
$← Enc(pkR,m

′)

σ
$← Sign(sk∗S ,m

′′)
Return (χ, c, σ)

Else if j = j∗

Pause A’s execution
Output m∗ ← m

B′2(c∗, d∗)
m′ ← (ID∗S , d

∗); m′′ ← (IDR, c
∗)

χ
$← Enc(pkR,m

′)

σ
$← Sign(sk∗S ,m

′′)
C ← (χ, c∗, σ)
Resume AOS (param, pk∗S) by returning C

If A queries OS(pkR,m)

(c, d)
$← Commit(param,m)

m′ ← (ID∗S , d); m′′ ← (IDR, c)

χ
$← Enc(pkR,m

′)

σ
$← Sign(sk∗S ,m

′′)
Return (χ, c, σ)

Parse C∗ as (χ, c, σ)
For 1 ≤ i ≤ n such that c(i) = c∗:

(IDS , d
(i))

$← Dec(sk∗R, χ
(i))

If Open(c∗, d∗) 6= Open(c∗, d(i)) 6= ⊥
Output d(i)

Otherwise output ⊥

If A wins the unforgeability game, then it must have output a tuple (pkS , pk∗R, sk∗R, C
∗)

such that (1) (pk∗R, sk∗R) is a valid receiver key pair; (2) Ver(pkS ,m
′′, σ∗) = > where m′′ =

((ID∗R, c
∗(1)), . . . , (ID∗R, c

∗(n))); (3) (ID
(i)
S , d(i)) ← Dec(sk∗R, χ

(i)) where ID
(i)
S is the identity asso-

ciated with pk
(i)
S for 1 ≤ i ≤ n; (4) m(i) ← Open(c(i), d(i)) satisfies m(i) 6= ⊥ for 1 ≤ i ≤ n; (5)

there exists i∗ such that pk
(i∗)
S = pk∗ and A never queries OS(pk∗R,m

(i∗)).

Suppose A outputs a valid forgery (pkS , C
∗) for a receiver key pair (pk∗R, sk∗R) where C∗ =

(χ∗, c∗, σ). We define E to be the event that the signcryption oracle was queried on (pk∗R,m) and
returned a signcryption ciphertext oracle of the form (χ, c∗(i

∗), σ) for some m, χ and σ.

If E does not occur, then we claim that the aggregate signature (pkS ,m
∗, σ∗) which is output

by B is a valid forgery. This is because the only reason that the B would query (ID∗R, c
∗(i∗)) to

the signature oracle is if it had received a signcryption query on (pk∗R,m
(i∗)) and such a query is

forbidden. Hence, Pr[ExptUF
A (k) = 1 ∧ ¬E] = Pr[ExptUF

B (k) = 1].

If E does occur then m(i) cannot be equal to the message m which was queried to the sign-
cryption oracle (as such a query is forbidden). Let (ID∗S , d) ← Dec(sk∗R, χ) and (ID∗S , d

∗) ←
Dec(sk∗R, χ

∗(i)). Then we have that Open(c∗(i), d) = m 6= m(i) = Open(c∗(i), d∗). As long as
B′ correctly chooses the value j∗ which corresponds to the signcryption oracle query which re-
turns c∗(i

∗) then B′ breaks the relaxed binding property of the commitment scheme. Hence,
Pr[ExptUF

A (k) ∧ E] ≤ qs Pr[Exptbind
B′ (k) = 1]. The stated result follows from combining these

two results.

We now consider confidentiality and prove our result via a sequence of games. We parameterise
a game Gbi by the bit b and let Sbi to be the event that the attacker outputs b′ = 1. Let Gb1 be
the game be the game defined by ExptIND-b

A (k). Hence, AdvIND
A (k) = |Pr[S1

1]−Pr[S0
1]|. We assume

that “starred” variables refer to those variables computed for the challenge ciphertext.

In Game Gb2 we change how the unsigncryption oracle works. If A2 queries the unsigncryption
oracle on (pkS , (χ, c, σ)), then the oracle responds as follows:

OU (pkS , (χ, c, σ)):
test ← 0
m′′ ← ((ID∗R, c

(1)), . . . , (ID∗R, c
(n)))

If Ver(pkS ,m
′′, σ) = ⊥ then return ⊥

For 1 ≤ i ≤ n:
If χ(i) = χ∗

If (pk
(i)
S , c(i)) 6= (pk∗S , c

∗) then return ⊥
Else test ← 1

Else
m′(i) ← Dec(sk∗R, χ

(i))

Parse m′(i) as (ID
(i)
S , d(i))

If pk
(i)
S is not the public key of ID

(i)
S then return ⊥

m(i) ← Open(c(i), d(i))
If m(i) = ⊥ then return ⊥

If test = 1 then return test

If ∃i such that pk
(i)
S = pk∗S and m(i) ∈ {m0,m1} then return test

Else return m

We claim that the action of the unsigncryption oracle in Gb2 is identical to that in Gb1. This is
clearly true for any ciphertext which does not have a component χ(i) = χ∗. If χ(i) = χ∗ then

m′(i) = (ID∗S , c
∗). Hence, the oracle should return ⊥ if pk

(i)
S = pk∗S or if c(i) 6= c∗ (since there

is at most one commitment for every decommitment). However, if (pk
(i)
S , c(i)) = (pk∗S , c

∗) then
m(i) = mb and the oracle should return test (assuming the other components correct decrypt).
Thus, Pr[Sb1] = Pr[Sb2].

In game Gb3, the challenge signcryption ciphertext is computed using a random decommitment,
as follows:

(c∗, d)
$← Commit(mb)

d∗
$← {0, 1}|d|

m′∗ ← (ID∗S , d
∗)

χ∗
$← Enc(pk∗R,m

′∗)
m′′∗ ← (ID∗R, c

∗)
σ∗ ← Sign(sk∗S ,m

′′∗)
C∗ ← (χ∗, c∗, σ∗)

We describe an attacker B against the IND-CCA2 security of the encryption scheme such that
|Pr[Sb3]− Pr[Sb2]| ≤ AdvIND

B (k). B = (B1,B2) runs as follows:

BOD
1 (pk∗):

param
$← ComSetup(1k)

pk∗R ← pk∗

(m0,m1, pk∗S , sk∗S)
$← AOU

1 (param, pk∗R)

(c∗, d∗0)
$← Commit(param,mb)

d∗1
$← {0, 1}|d∗0 |

m′∗0 ← (ID∗S , d
∗
0); m′∗1 ← (ID∗S , d

∗
1)

Output (m′∗0 ,m
′∗
1)

BOD
2 (χ∗):

σ∗
$← Sign(sk∗S , (ID∗R, c

∗))
C∗ ← (χ∗, c∗, σ∗)
If |m0| 6= |m1| then C∗ ← ⊥
If (pk∗S , sk∗S) /∈ SPK (k) then C∗ ← ⊥
b′

$← AOU
2 (C∗)

Output b′

OU (pkS , (χ, c, σ)):
test ← 0
m′′ ← ((ID∗R, c

(1)), . . . , (ID∗R, c
(n)))

If Ver(pkS ,m
′′, σ) =⊥ then return ⊥

For 1 ≤ i ≤ n:
If χ(i) = χ∗

If (pk
(i)
S , c(i)) 6= (pk∗S , c

∗) then return ⊥
Else test ← 1

Else
Query m′(i) ← OD(χ(i))

Parse m′(i) as (ID
(i)
S , d(i))

If pk
(i)
S is not the public key of ID

(i)
S then return ⊥

m(i) ← Open(c(i), d(i))
If m(i) = ⊥ then return ⊥

If test = 1 then return test

If ∃ i such that pk
(i)
S = pk∗S and m(i) ∈ {m0,m1}

Return test

Else return m

We note that B correctly simulates the unsigncryption oracle as it will never query OD(χ∗).
Hence,

AdvIND
B (k) = |Pr[ExptIND-1

A (k) = 1]− Pr[ExptIND-0
A (k) = 1]| = |Pr[Sb3]− Pr[Sb2]| .

Lastly, we show that there exists an attacker B′ against the hiding property of the commitment
scheme such that |Pr[S1

3]− Pr[S0
3]| ≤ Advhide

B′ (k).

B′1(param):

(pk∗R, sk∗R)
$← EncGen(1k)

(m0,m1, pk∗S , sk∗S)
$← AOU

1 (param, pk∗R)
Output (m0,m1)

B′2(c∗)
If c∗ = ⊥ or (pk∗S , sk∗S) /∈ SPK (k)
C∗ ←⊥

Else
(c′, d′)← Commit(m0)

d∗
$← {0, 1}|d′|

m′∗ ← (ID∗S , d
∗)

χ∗
$← Enc(pk∗R,m

′∗)
m′′∗ ← (ID∗R, c

∗)

σ∗
$← Sign(sk∗S ,m

′′∗)
C∗ ← (χ∗, c∗, σ∗)

b′
$← AOU

2 (C∗)
Output b′

OU (pkS , (χ, c, σ)):
test ← 0
m′′ ← ((ID∗R, c

(1)), . . . , (ID∗R, c
(n)))

If Ver(pkS ,m
′′, σ) =⊥ then return ⊥

For 1 ≤ i ≤ n:
If χ(i) = χ∗

If (pk
(i)
S , c(i)) 6= (pk∗S , c

∗) then return ⊥
Else test ← 1

Else
m′(i) ← Dec(sk∗R, χ

(i))

Parse m′(i) as (ID
(i)
S , d(i))

If pk
(i)
S is not the public key of ID

(i)
S then return ⊥

m(i) ← Open(c(i), d(i))
If m(i) = ⊥ then return ⊥

If test = 1 then return test

If ∃ i such that pk
(i)
S = pk∗S and m(i) ∈ {m0,m1}

Return test

Else return m

Again, the unsigncryption oracle simulation is perfect. Furthermore,

Advhide
B′ (k) = |Pr[Expthid-1

B′ (k) = 1]− Pr[Expthid-0
B′ (k) = 0]| = |Pr[S1

3]− Pr[S0
3]| .

Combining inequalities gives the stated result. ut

