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Abstract. In this note we prove that the controversial Diffie-Hellman
Knowledge problem is secure in the generic group model. This appears
to be the first paper that presents any evidence as to whether the Diffie-
Hellman Knowledge problem is true or false, although a similar result
was developed independently and in parallel by Abe and Fehr [1].

1 The Generic Group Model

It is clear that the way in which we represent a group to a polynomial-time
algorithm affects the computational power of that algorithm. For example, the
computational Diffie-Hellman problem is (almost) always presented as a problem
on a representation of the group Cp, where p is a large prime number. However,
it is clear that the difficulty of solving the Diffie-Hellman problem depends on
the way the group Cp is represented: if Cp is presented as additive arithmetic
modulo p then the Diffie-Hellman problems is easy, whereas if Cp is presented as
the order p subgroup of the multiplicative group of a finite field or of an elliptic
curve group then we believe the Diffie-Hellman problem is hard to solve.

The generic group model is a theoretical model that aims to analyse the
success of algorithms against groups whose representations reveal no information
to the attacker. There are various attempts to formalise the idea of a generic
group [2, 12, 15, 17]. The most popular (and intuitively obvious) of these is that
provided by Shoup [17]. In this model, the attacker is not given direct access
to group elements, but to the images of group elements under the the action
of a random one-to-one mapping σ : G → {0, 1}k. Group operations can be
computed by the algorithm by way of a series of oracles. The attacker is given
access to addition oracle ADD and an inversion oracle INV such that

ADD(σ(x), σ(y)) = σ(x + y) and INV (σ(x)) = σ(−x) (1)

It is clear that in this situation, the attacker can gain no advantage in solving a
computational problem from the representation σ(x) of the group element x.

The model has been used to provide evidence as to the hardness of several
computational problems [6, 13, 17, 18]. However, we remind the reader that the
generic group model can only ever be used to provide evidence as to the hard-
ness of the problem, not to provide any kind of proof. This is because (1) it



does not tell us anything the difficulty of a problem in any one particular group
representation, and (2) it has been shown that there exists problems that are
provably difficult in the generic group model and yet insecure when this prob-
lem is instantiated on any particular group representation [8]. Nevertheless, the
generic group model has been used to justify the use of several new assumptions
recently, particular in situations where authors wish to prove the security of
cryptosystems without using the random oracle model.

In the next section, when we consider the Diffie-Hellman Knowledge (DHK)
assumption, one valid strategy that the attacker might be able to employ is
to pick group elements at random (i.e. in such a way that the attacker does
not know their discrete logarithm with respect to any base). This ability is
not usually considered in the generic group model. We model this ability by
setting k = dlog |G|e. The attacker may now generate random group elements
by choosing random strings σ̂ ∈ {0, 1}k: these will be a representation of some
group element with probability at least 1/2.1 If a random σ̂ is the representation
of some new group element, then it will be the representation of a random group
element whose image under σ has not already been computed. It may be assumed
that the addition and inversion oracles return an error message when queried
with a bitstring σ̂ /∈ Im σ. If we wish to consider groups for which it is impossible
to pick random group elements, then we should take k À log |G|. It should
be noted that all of known results on the difficulty of solving computational
problems in the generic group model remain true when the attacker is allowed
to sample group elements at random.

2 The Diffie-Hellman Knowledge (DHK) Assumption

In this section we will consider the difficulty of the Diffie-Hellman Knowledge
(DHK) problem in the generic group model.

Definition 1. Let λ be a security parameter and σ be a representation of the
cyclic group Z/nZ where n contains a prime factor p of bit-length λ. Let A
be any algorithm (attacker) that takes the group elements (σ(1), σ(x)) as input,
where x is chosen at random from {1, 2, . . . , n}, and outputs bitstrings (B, C) ∈
{0, 1}k × {0, 1}k. The Diffie-Hellman Knowledge (DHK) assumption states that
for each polynomial-time attacker A, there exists a polynomial-time extractor A∗
that takes as input the group elements (σ(1), σ(x), B, C) and the random coins
R[A] used by A, and outputs an element r ∈ {1, 2, . . . , n} such that B = σ(r)
and C = σ(xr) (if such an r exists).

1 An alternative solution would be to provide the attacker with access to an oracle
that randomly generates group elements. This has the advantage that the attacker
can always generate a random group element with probability one. Since our analysis
will assume that every new bitstring σ̂ ∈ {0, 1}k that the attacker produces is the
encoding of some group element, our results will hold regardless of how we define
the attacker’s ability to sample group elements.



The DHK assumption is designed to capture the notion that it is impossible to
create a Diffie-Hellman tuple (σ(1), σ(x), σ(r), σ(xr)) from (σ(1), σ(x)) without
knowing r. This is a very strong assumption that, despite being used in several
high-profile papers [4, 5, 7, 9–11], has been heavily criticised. Opponents of the
assumption have pointed out that it is not efficiently falsifiable [14] and so any
proof that it is false must be complex and as difficult to check as a proof that
it is true. In particular, experimental evidence cannot be used to check whether
this assumption is false or true.

We have presented the ‘standard model’ version of the DHK problem. We will
actually show that, in the generic group model, there exists a single extractor
A∗ that can recover the value r produced by any polynomial-time attacker A
when given the oracle queries that A used to produce its output. This is clearly
sufficient to show that the DHK assumption is true for a generic group. It can
be noted that the difference between the ‘standard model’ version of the DHK
assumption and this ‘generic group’ version of the DHK assumption is similar to
the difference between plaintext awareness in the random oracle model [3] and
in the standard model [5]. This result is important because it is the first piece of
evidence presented that suggests whether the DHK assumption is true or false.

The proof is comparatively simple, and uses techniques suggested by Shoup
[17]. It relies on the following crucial lemma [16, 17].

Lemma 1. Let F (x1, x2, . . . , xm) be a polynomial of total degree d ≥ 1. Then
the probability that F (x1, x2, . . . , xm) = 0 mod n for randomly chosen values
(x1, x2, . . . , xm) in Z/nZ is bounded above by d/p where p is the largest prime
dividing n.

Theorem 1. The DHK assumption holds in a generic group.

Proof The extractor A∗ keeps track of the oracle queries of A as monomials.
We set F0 = 1 and F1 = X — these represent the group elements σ(1) and
σ(x). If A makes an oracle query using a bitstring σi that has not been an input
or output by the addition or inversion oracles, then we assign a new variable
Zi to the group element σi. The result of applying the addition oracle on the
group elements σi and σj (represented by monomials Fi and Fj) is a new group
element σl represented by the monomial Fl = Fi +Fj . The result of applying the
inversion oracle to a group element σi (represented by monomial Fi) is a group
element σl represented by the monomial −Fi.

We may think of these monomials as representing the group because each
element σi can be thought of as σ(Fi(x, z1, z2, . . . , zm)). This representation is
completely consistent unless the attacker computes two group elements σi = σj

such that Fi 6= Fj . Note that in this case we must have Fi(x, z1, z2, . . . , zm) =
Fj(x, z1, z2, . . . , zm) for the randomly chosen values (x, z1, z2, . . . , zm). This oc-
curs with probability at most O(1/p). Hence, the probability that the monomial
representation is not consistent with the representation given by σ is bounded
by O(m2/p), which is negligible as a function of the security parameter.

A eventually terminates and outputs two group elements (σi, σj) which A∗
represents as monomials (Fi, Fj). If Fi = r and Fj = rX for some value of r, then



A∗ outputs r. Otherwise A∗ outputs ⊥ — that the tuple is not a Diffie-Hellman
tuple. If (σ(1), σ(x), σi, σj) is a Diffie-Hellman tuple, then

x · Fi(x, z1, z2, . . . , zm) = Fj(x, z1, z2, . . . , zm)
⇐⇒ x · Fi(x, z1, z2, . . . , zm)− Fj(x, z1, z2, . . . , zm) = 0 .

This can occur because X · Fi = Fj (in which case Fi = r and Fj = rX, and
the extractor A∗ returns the correct value r), or because X · Fi 6= Fj but the
equation holds for the particular random values (x, z1, z2, . . . , zm) used (in which
case the extractor fails). However, this latter event occurs with probability at
most 2/p. Hence, the extractor works with non-negligible probability. ut
It should be noted that a similar result was developed independently (and con-
currently) by Abe and Fehr [1].
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